Compare View
Commits (4)
Diff
Showing 4 changed files Inline Diff
lab3/Makefile
View file @
2b4ce20
File was created | 1 | GCC = gcc | ||
2 | CFLAGS = -O3 -fopenmp | |||
3 | OMP_FLAG = -fopenmp | |||
4 | RM = rm -rf | |||
5 | ||||
6 | ||||
7 | EXE = omp_heat2D ser_heat2D | |||
8 | ||||
9 | all : $(EXE) | |||
10 | ||||
11 | #.PHONY: all clean purge | |||
12 | ||||
13 | ||||
14 | pi_ser: ser_heat2D.o | |||
15 | $(GCC) $(CFLAGS) -o $@ $^ | |||
16 | ||||
17 | pi_task: omp_heat2D.o |
lab3/omp_heat2D.c
View file @
2b4ce20
File was created | 1 | /**************************************************************************** | ||
2 | * DESCRIPTION: | |||
3 | * Serial HEAT2D Example - C Version | |||
4 | * This example is based on a simplified | |||
5 | * two-dimensional heat equation domain decomposition. The initial | |||
6 | * temperature is computed to be high in the middle of the domain and | |||
7 | * zero at the boundaries. The boundaries are held at zero throughout | |||
8 | * the simulation. During the time-stepping, an array containing two | |||
9 | * domains is used; these domains alternate between old data and new data. | |||
10 | * | |||
11 | * The physical region, and the boundary conditions, are suggested | |||
12 | by this diagram; | |||
13 | ||||
14 | u = 0 | |||
15 | +------------------+ | |||
16 | | | | |||
17 | u = 100 | | u = 100 | |||
18 | | | | |||
19 | +------------------+ | |||
20 | u = 100 | |||
21 | ||||
22 | Interrior point : | |||
23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |||
24 | ||||
25 | ****************************************************************************/ | |||
26 | #include <stdio.h> | |||
27 | #include <stdlib.h> | |||
28 | #include <math.h> | |||
29 | #include <omp.h> | |||
30 | ||||
31 | #define NN 50 | |||
32 | #define MM 50 | |||
33 | ||||
34 | #define ITER_PRINT 100 | |||
35 | #define PRINT_DATA 1 | |||
36 | ||||
37 | #define _EPSILON 0.001 | |||
38 | ||||
39 | ||||
40 | void update(int nx,int ny, float *u, float *unew, float * diff); | |||
41 | void inidat(int nx, int ny, float *u, float *unew); | |||
42 | void prtdat(int nx, int ny, float *u,const char *fnam); | |||
43 | ||||
44 | ||||
45 | ||||
46 | ||||
47 | int main(int argc, char *argv[]) | |||
48 | { | |||
49 | ||||
50 | float diff=1.0; | |||
51 | float EPSILON=_EPSILON; | |||
52 | int N=NN,M=MM; | |||
53 | ||||
54 | if(argc !=3) | |||
55 | { | |||
56 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |||
57 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |||
58 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |||
59 | return -1; | |||
60 | } | |||
61 | ||||
62 | N = M = atoi(argv[1]); | |||
63 | EPSILON = atof(argv[2]); | |||
64 | ||||
65 | float *u = (float *)malloc(N * M * sizeof(float)); | |||
66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |||
67 | ||||
68 | if(u==0 || unew ==0) | |||
69 | { | |||
70 | perror("Can't allocated data\n"); | |||
71 | return -1; | |||
72 | } | |||
73 | ||||
74 | printf ( "\n" ); | |||
75 | printf ( "HEATED_PLATE\n" ); | |||
76 | printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | |||
77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |||
78 | printf ( " over a rectangular plate.\n" ); | |||
79 | printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | |||
80 | ||||
81 | ||||
82 | /* Initialize grid and create input file */ | |||
83 | printf("Initializing grid\n"); | |||
84 | ||||
85 | inidat(N, M,u,unew); | |||
86 | ||||
87 | prtdat(N, M,u, "initial.dat"); | |||
88 | ||||
89 | printf("Start computing\n"); | |||
90 | ||||
91 | int iter=0; | |||
92 | ||||
93 | /* | |||
94 | * iterate until the new solution unew differs from the old solution u | |||
95 | * by no more than EPSILON. | |||
96 | * */ | |||
97 | ||||
98 | while(diff> EPSILON) { | |||
99 | ||||
100 | update(N, M, u, unew,&diff); | |||
101 | ||||
102 | if(iter%ITER_PRINT==0) | |||
103 | printf("Iteration %d, diff = %f\n ", iter,diff); | |||
104 | ||||
105 | iter++; | |||
106 | } | |||
107 | ||||
108 | prtdat(N, M, u, "final.dat"); | |||
109 | ||||
110 | free(u); | |||
111 | free(unew); | |||
112 | } | |||
113 | ||||
114 | ||||
115 | ||||
116 | /**************************************************************************** | |||
117 | * subroutine update | |||
118 | ****************************************************************************/ | |||
119 | void update(int nx,int ny, float *u, float *unew, float * diff) | |||
120 | { | |||
121 | int ix, iy; | |||
122 | *diff=0.0; | |||
123 | ||||
124 | #pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | |||
125 | for (ix = 1; ix < nx-1; ix++) { | |||
126 | for (iy = 1; iy < ny-1; iy++) { | |||
127 | unew[ix*ny+iy] = | |||
128 | (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | |||
129 | u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | |||
130 | ||||
131 | } | |||
132 | } | |||
133 | ||||
134 | //compute reduction | |||
135 | ||||
136 | ||||
137 | float mydiff; | |||
138 | ||||
139 | #pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | |||
140 | { | |||
141 | mydiff=0.0; | |||
142 | #pragma omp for | |||
143 | for (ix = 1; ix < nx-1; ix++) { | |||
144 | for (iy = 1; iy < ny-1; iy++) { | |||
145 | if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |||
146 | { | |||
147 | mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |||
148 | } | |||
149 | } | |||
150 | } | |||
151 | ||||
152 | ||||
153 | # pragma omp critical | |||
154 | { | |||
155 | if (*diff < mydiff ) | |||
156 | { | |||
157 | *diff = mydiff; | |||
158 | } | |||
159 | } | |||
160 | ||||
161 | ||||
162 | #pragma omp for | |||
163 | for (ix = 1; ix < nx-1; ix++) { | |||
164 | for (iy = 1; iy < ny-1; iy++) { | |||
165 | u[ix*ny+iy] = unew[ix*ny+iy]; | |||
166 | } | |||
167 | } | |||
168 | } | |||
169 | } | |||
170 | ||||
171 | /***************************************************************************** | |||
172 | * Initialize Data | |||
173 | *****************************************************************************/ | |||
174 | void inidat(int nx, int ny, float *u, float *unew) | |||
175 | { | |||
176 | int ix, iy; | |||
177 | ||||
178 | /* | |||
179 | *Set boundary data and interrior values | |||
180 | * */ | |||
181 | for (ix = 0; ix < nx; ix++) | |||
182 | for (iy = 0; iy < ny; iy++) { | |||
183 | ||||
184 | if(ix==0) | |||
185 | { | |||
186 | u[ix*ny+iy]=0.0; | |||
187 | } | |||
188 | else | |||
189 | if(iy==0 && ix!=0) | |||
190 | { | |||
191 | u[ix*ny+iy]=100.0; | |||
192 | }else | |||
193 | ||||
194 | if(ix==nx-1) | |||
195 | { | |||
196 | u[ix*ny+iy]=100.0; | |||
197 | }else | |||
198 | ||||
199 | if(iy==ny-1 && ix!=0) | |||
200 | { | |||
201 | u[ix*ny+iy]=100.0; | |||
202 | }else | |||
203 | ||||
204 | u[ix*ny+iy]=0.0; | |||
205 | } | |||
206 | } | |||
207 | ||||
208 | /************************************************************************** | |||
209 | * Print Data to files | |||
210 | **************************************************************************/ | |||
211 | void prtdat(int nx, int ny, float *u,const char *fnam) | |||
212 | { | |||
213 | ||||
214 | int ix, iy; | |||
215 | FILE *fp; | |||
216 | ||||
217 | if(ITER_PRINT==0)return; | |||
218 | ||||
219 | fp = fopen(fnam, "w"); | |||
220 | ||||
221 | for (ix = 0 ; ix < nx; ix++) { | |||
222 | for (iy =0; iy < ny; iy++) { | |||
223 | ||||
224 | fprintf(fp, "%8.3f", u[ix*ny+iy]); | |||
225 | ||||
226 | if(iy!=ny-1) | |||
227 | { | |||
228 | fprintf(fp, " "); | |||
229 | }else | |||
230 | { | |||
231 | fprintf(fp, "\n"); | |||
232 | } | |||
233 | } | |||
234 | } | |||
235 | ||||
236 | fclose(fp); | |||
237 | } | |||
238 | ||||
239 | ||||
240 | ||||
/**************************************************************************** | 1 | 241 | ||
* DESCRIPTION: | 2 | |||
* Serial HEAT2D Example - C Version | 3 | |||
* This example is based on a simplified | 4 | |||
* two-dimensional heat equation domain decomposition. The initial | 5 | |||
* temperature is computed to be high in the middle of the domain and | 6 | |||
* zero at the boundaries. The boundaries are held at zero throughout | 7 | |||
* the simulation. During the time-stepping, an array containing two | 8 | |||
* domains is used; these domains alternate between old data and new data. | 9 | |||
* | 10 | |||
* The physical region, and the boundary conditions, are suggested | 11 | |||
by this diagram; | 12 | |||
13 | ||||
u = 0 | 14 | |||
+------------------+ | 15 | |||
| | | 16 | |||
u = 100 | | u = 100 | 17 | |||
| | | 18 | |||
+------------------+ | 19 | |||
u = 100 | 20 | |||
21 | ||||
Interrior point : | 22 | |||
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | |||
24 | ||||
****************************************************************************/ | 25 | |||
#include <stdio.h> | 26 | |||
#include <stdlib.h> | 27 | |||
#include <math.h> | 28 | |||
#include <omp.h> | 29 | |||
30 | ||||
#define NN 50 | 31 | |||
#define MM 50 | 32 | |||
33 | ||||
#define ITER_PRINT 100 | 34 | |||
#define PRINT_DATA 1 | 35 | |||
36 | ||||
#define _EPSILON 0.001 | 37 | |||
38 | ||||
39 | ||||
void update(int nx,int ny, float *u, float *unew, float * diff); | 40 | |||
void inidat(int nx, int ny, float *u, float *unew); | 41 | |||
void prtdat(int nx, int ny, float *u,const char *fnam); | 42 | |||
43 | ||||
44 | ||||
45 | ||||
46 | ||||
int main(int argc, char *argv[]) | 47 | |||
{ | 48 | |||
49 | ||||
float diff=1.0; | 50 | |||
float EPSILON=_EPSILON; | 51 | |||
int N=NN,M=MM; | 52 | |||
53 | ||||
if(argc !=3) | 54 | |||
{ | 55 | |||
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 56 | |||
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 57 | |||
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 58 | |||
return -1; | 59 | |||
} | 60 | |||
61 | ||||
N = M = atoi(argv[1]); | 62 | |||
EPSILON = atof(argv[2]); | 63 | |||
64 | ||||
float *u = (float *)malloc(N * M * sizeof(float)); | 65 | |||
float *unew = (float *)malloc(N * M * sizeof(float)); | 66 | |||
67 | ||||
if(u==0 || unew ==0) | 68 | |||
{ | 69 | |||
perror("Can't allocated data\n"); | 70 | |||
return -1; | 71 | |||
} | 72 | |||
73 | ||||
printf ( "\n" ); | 74 | |||
printf ( "HEATED_PLATE\n" ); | 75 | |||
printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | 76 | |||
printf ( " A program to solve for the steady state temperature distribution\n" ); | 77 | |||
printf ( " over a rectangular plate.\n" ); | 78 | |||
printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | 79 | |||
80 | ||||
81 | ||||
/* Initialize grid and create input file */ | 82 | |||
printf("Initializing grid\n"); | 83 | |||
84 | ||||
inidat(N, M,u,unew); | 85 | |||
86 | ||||
prtdat(N, M,u, "initial.dat"); | 87 | |||
88 | ||||
printf("Start computing\n"); | 89 | |||
90 | ||||
int iter=0; | 91 | |||
92 | ||||
/* | 93 | |||
* iterate until the new solution unew differs from the old solution u | 94 | |||
* by no more than EPSILON. | 95 | |||
* */ | 96 | |||
97 | ||||
while(diff> EPSILON) { | 98 | |||
99 | ||||
update(N, M, u, unew,&diff); | 100 | |||
101 | ||||
if(iter%ITER_PRINT==0) | 102 | |||
printf("Iteration %d, diff = %f\n ", iter,diff); | 103 | |||
104 | ||||
iter++; | 105 | |||
} | 106 | |||
107 | ||||
prtdat(N, M, u, "final.dat"); | 108 | |||
109 | ||||
free(u); | 110 | |||
free(unew); | 111 | |||
} | 112 | |||
113 | ||||
114 | ||||
115 | ||||
/**************************************************************************** | 116 | |||
* subroutine update | 117 | |||
****************************************************************************/ | 118 | |||
void update(int nx,int ny, float *u, float *unew, float * diff) | 119 | |||
{ | 120 | |||
int ix, iy; | 121 | |||
*diff=0.0; | 122 | |||
123 | ||||
#pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | 124 | |||
for (ix = 1; ix < nx-1; ix++) { | 125 | |||
for (iy = 1; iy < ny-1; iy++) { | 126 | |||
unew[ix*ny+iy] = | 127 | |||
(u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | 128 | |||
u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | 129 | |||
130 | ||||
} | 131 | |||
} | 132 | |||
133 | ||||
//compute reduction | 134 | |||
135 | ||||
136 | ||||
float mydiff; | 137 | |||
138 | ||||
#pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | 139 | |||
{ | 140 | |||
mydiff=0.0; | 141 | |||
#pragma omp for | 142 | |||
for (ix = 1; ix < nx-1; ix++) { | 143 | |||
for (iy = 1; iy < ny-1; iy++) { | 144 | |||
if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 145 | |||
{ | 146 | |||
mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 147 | |||
} | 148 | |||
} | 149 | |||
} | 150 | |||
151 | ||||
152 | ||||
# pragma omp critical | 153 | |||
{ | 154 | |||
if (*diff < mydiff ) | 155 | |||
{ | 156 | |||
*diff = mydiff; | 157 | |||
} | 158 | |||
} | 159 | |||
160 | ||||
161 | ||||
#pragma omp for | 162 | |||
for (ix = 1; ix < nx-1; ix++) { | 163 | |||
for (iy = 1; iy < ny-1; iy++) { | 164 | |||
u[ix*ny+iy] = unew[ix*ny+iy]; | 165 | |||
} | 166 | |||
} | 167 | |||
} | 168 | |||
} | 169 | |||
170 | ||||
/***************************************************************************** | 171 | |||
* Initialize Data | 172 | |||
*****************************************************************************/ | 173 | |||
void inidat(int nx, int ny, float *u, float *unew) | 174 | |||
{ | 175 | |||
int ix, iy; | 176 | |||
177 | ||||
/* | 178 | |||
*Set boundary data and interrior values | 179 |
lab3/plot.py
View file @
2b4ce20
File was created | 1 | #!/usr/bin/python | ||
2 | #-*-coding:utf8-*- | |||
3 | from sys import argv | |||
4 | from pylab import * | |||
5 | ||||
6 | if __name__ == "__main__": | |||
7 | if len(argv) != 2: | |||
8 | print "Usage: python", argv[0], " matrix.dat" | |||
9 | exit (0) | |||
10 | ||||
11 | ||||
12 | f = open ( argv[1] , 'r') | |||
13 | A = [ map(float,line.split()) for line in f ] | |||
14 | ||||
15 | figure(1) | |||
16 | imshow(A, interpolation='nearest') | |||
17 | grid(True) | |||
18 | show() | |||
#!/usr/bin/python | 1 | 19 | ||
#-*-coding:utf8-*- | 2 | |||
from sys import argv | 3 | |||
from pylab import * | 4 | |||
5 | ||||
if __name__ == "__main__": | 6 | |||
if len(argv) != 2: | 7 | |||
print "Usage: python", argv[0], " matrix.dat" | 8 | |||
exit (0) | 9 | |||
10 | ||||
11 | ||||
f = open ( argv[1] , 'r') | 12 | |||
A = [ map(float,line.split()) for line in f ] | 13 | |||
14 |
lab3/ser_heat2D.c
View file @
2b4ce20
File was created | 1 | /**************************************************************************** | ||
2 | * DESCRIPTION: | |||
3 | * Serial HEAT2D Example - C Version | |||
4 | * This example is based on a simplified | |||
5 | * two-dimensional heat equation domain decomposition. The initial | |||
6 | * temperature is computed to be high in the middle of the domain and | |||
7 | * zero at the boundaries. The boundaries are held at zero throughout | |||
8 | * the simulation. During the time-stepping, an array containing two | |||
9 | * domains is used; these domains alternate between old data and new data. | |||
10 | * | |||
11 | * The physical region, and the boundary conditions, are suggested | |||
12 | by this diagram; | |||
13 | ||||
14 | u = 0 | |||
15 | +------------------+ | |||
16 | | | | |||
17 | u = 100 | | u = 100 | |||
18 | | | | |||
19 | +------------------+ | |||
20 | u = 100 | |||
21 | ||||
22 | Interrior point : | |||
23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |||
24 | ||||
25 | ****************************************************************************/ | |||
26 | #include <stdio.h> | |||
27 | #include <stdlib.h> | |||
28 | #include <math.h> | |||
29 | ||||
30 | #define NN 50 | |||
31 | #define MM 50 | |||
32 | ||||
33 | #define ITER_PRINT 100 | |||
34 | #define PRINT_DATA 1 | |||
35 | ||||
36 | #define _EPSILON 0.01 | |||
37 | ||||
38 | ||||
39 | void update(int nx,int ny, float *u, float *unew, float * diff); | |||
40 | void inidat(int nx, int ny, float *u, float *unew); | |||
41 | void prtdat(int nx, int ny, float *u,const char *fnam); | |||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
46 | int main(int argc, char *argv[]) | |||
47 | { | |||
48 | int N=NN,M=MM; | |||
49 | ||||
50 | float EPSILON=_EPSILON; | |||
51 | ||||
52 | if(argc !=3) | |||
53 | { | |||
54 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |||
55 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |||
56 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |||
57 | return -1; | |||
58 | } | |||
59 | ||||
60 | N = M = atoi(argv[1]); | |||
61 | EPSILON = atof(argv[2]); | |||
62 | ||||
63 | float diff=1.0; | |||
64 | ||||
65 | float *u = (float *)malloc(N * M * sizeof(float)); | |||
66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |||
67 | ||||
68 | if(u==0 || unew ==0) | |||
69 | { | |||
70 | perror("Can't allocated data\n"); | |||
71 | return -1; | |||
72 | } | |||
73 | ||||
74 | printf ( "\n" ); | |||
75 | printf ( "HEATED_PLATE\n" ); | |||
76 | printf ( " Serial version\n" ); | |||
77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |||
78 | printf ( " over a rectangular plate.\n" ); | |||
79 | printf ( "\n" ); | |||
80 | printf ( " Spatial grid of %d by %d points.\n", M, N ); | |||
81 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |||
82 | ||||
83 | /* Initialize grid and create input file */ | |||
84 | printf("Initializing grid\n"); | |||
85 | ||||
86 | inidat(N, M,u,unew); | |||
87 | ||||
88 | prtdat(N, M,u, "initial.dat"); | |||
89 | ||||
90 | printf("Start computing\n\n"); | |||
91 | ||||
92 | int iter=0; | |||
93 | ||||
94 | /* | |||
95 | * iterate until the new solution unew differs from the old solution u | |||
96 | * by no more than EPSILON. | |||
97 | * */ | |||
98 | ||||
99 | while(diff> EPSILON) { | |||
100 | ||||
101 | update(N, M, u, unew,&diff); | |||
102 | ||||
103 | if(iter%ITER_PRINT==0) | |||
104 | ||||
105 | printf("Iteration %d, diff = %f\n ", iter,diff); | |||
106 | ||||
107 | iter++; | |||
108 | } | |||
109 | ||||
110 | prtdat(N, M, u, "final.dat"); | |||
111 | ||||
112 | free(u); | |||
113 | free(unew); | |||
114 | } | |||
115 | ||||
116 | ||||
117 | ||||
118 | /**************************************************************************** | |||
119 | * subroutine update | |||
120 | ****************************************************************************/ | |||
121 | void update(int nx,int ny, float *u, float *unew, float * diff) | |||
122 | { | |||
123 | int ix, iy; | |||
124 | *diff=0.0; | |||
125 | ||||
126 | for (ix = 1; ix < nx-1; ix++) { | |||
127 | for (iy = 1; iy < ny-1; iy++) { | |||
128 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |||
129 | ; | |||
130 | if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |||
131 | { | |||
132 | *diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |||
133 | } | |||
134 | } | |||
135 | ||||
136 | } | |||
137 | ||||
138 | ||||
139 | for (ix = 1; ix < nx-1; ix++) { | |||
140 | for (iy = 1; iy < ny-1; iy++) { | |||
141 | u[ix*ny+iy] = unew[ix*ny+iy]; | |||
142 | } | |||
143 | } | |||
144 | ||||
145 | } | |||
146 | ||||
147 | /***************************************************************************** | |||
148 | * Initialize Data | |||
149 | *****************************************************************************/ | |||
150 | void inidat(int nx, int ny, float *u, float *unew) | |||
151 | { | |||
152 | int ix, iy; | |||
153 | ||||
154 | /* | |||
155 | *Set boundary data and interrior values | |||
156 | * */ | |||
157 | for (ix = 0; ix < nx; ix++) | |||
158 | for (iy = 0; iy < ny; iy++) { | |||
159 | ||||
160 | if(ix==0) | |||
161 | { | |||
162 | u[ix*ny+iy]=0.0; | |||
163 | } | |||
164 | else | |||
165 | if(iy==0 && ix!=0) | |||
166 | { | |||
167 | u[ix*ny+iy]=100.0; | |||
168 | }else | |||
169 | ||||
170 | if(ix==nx-1) | |||
171 | { | |||
172 | u[ix*ny+iy]=100.0; | |||
173 | }else | |||
174 | ||||
175 | if(iy==ny-1 && ix!=0) | |||
176 | { | |||
177 | u[ix*ny+iy]=100.0; | |||
178 | }else | |||
179 | ||||
180 | u[ix*ny+iy]=0.0; | |||
181 | } | |||
182 | } | |||
183 | ||||
184 | /************************************************************************** | |||
185 | * Print Data to files | |||
186 | **************************************************************************/ | |||
187 | void prtdat(int nx, int ny, float *u,const char *fname) | |||
188 | { | |||
189 | ||||
190 | int ix, iy; | |||
191 | FILE *fp; | |||
192 | ||||
193 | if(ITER_PRINT==0)return; | |||
194 | ||||
195 | fp = fopen(fname, "w"); | |||
196 | ||||
197 | // fprintf ( fp, "%d\n", M ); | |||
198 | // fprintf ( fp, "%d\n", N ); | |||
199 | ||||
200 | for (ix = 0 ; ix < nx; ix++) { | |||
201 | for (iy =0; iy < ny; iy++) { | |||
202 | ||||
203 | fprintf(fp, "%6.2f ", u[ix*ny+iy]); | |||
204 | } | |||
205 | fputc ( '\n', fp); | |||
206 | } | |||
207 | ||||
208 | printf (" Data written to the output file %s\n", fname); | |||
209 | fclose(fp); | |||
210 | } | |||
211 | ||||
212 | ||||
213 | ||||
/**************************************************************************** | 1 | 214 | ||
* DESCRIPTION: | 2 | |||
* Serial HEAT2D Example - C Version | 3 | |||
* This example is based on a simplified | 4 | |||
* two-dimensional heat equation domain decomposition. The initial | 5 | |||
* temperature is computed to be high in the middle of the domain and | 6 | |||
* zero at the boundaries. The boundaries are held at zero throughout | 7 | |||
* the simulation. During the time-stepping, an array containing two | 8 | |||
* domains is used; these domains alternate between old data and new data. | 9 | |||
* | 10 | |||
* The physical region, and the boundary conditions, are suggested | 11 | |||
by this diagram; | 12 | |||
13 | ||||
u = 0 | 14 | |||
+------------------+ | 15 | |||
| | | 16 | |||
u = 100 | | u = 100 | 17 | |||
| | | 18 | |||
+------------------+ | 19 | |||
u = 100 | 20 | |||
21 | ||||
Interrior point : | 22 | |||
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | |||
24 | ||||
****************************************************************************/ | 25 | |||
#include <stdio.h> | 26 | |||
#include <stdlib.h> | 27 | |||
#include <math.h> | 28 | |||
29 | ||||
#define NN 50 | 30 | |||
#define MM 50 | 31 | |||
32 | ||||
#define ITER_PRINT 100 | 33 | |||
#define PRINT_DATA 1 | 34 | |||
35 | ||||
#define _EPSILON 0.01 | 36 | |||
37 | ||||
38 | ||||
void update(int nx,int ny, float *u, float *unew, float * diff); | 39 | |||
void inidat(int nx, int ny, float *u, float *unew); | 40 | |||
void prtdat(int nx, int ny, float *u,const char *fnam); | 41 | |||
42 | ||||
43 | ||||
44 | ||||
45 | ||||
int main(int argc, char *argv[]) | 46 | |||
{ | 47 | |||
int N=NN,M=MM; | 48 | |||
49 | ||||
float EPSILON=_EPSILON; | 50 | |||
51 | ||||
if(argc !=3) | 52 | |||
{ | 53 | |||
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 54 | |||
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 55 | |||
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 56 | |||
return -1; | 57 | |||
} | 58 | |||
59 | ||||
N = M = atoi(argv[1]); | 60 | |||
EPSILON = atof(argv[2]); | 61 | |||
62 | ||||
float diff=1.0; | 63 | |||
64 | ||||
float *u = (float *)malloc(N * M * sizeof(float)); | 65 | |||
float *unew = (float *)malloc(N * M * sizeof(float)); | 66 | |||
67 | ||||
if(u==0 || unew ==0) | 68 | |||
{ | 69 | |||
perror("Can't allocated data\n"); | 70 | |||
return -1; | 71 | |||
} | 72 | |||
73 | ||||
printf ( "\n" ); | 74 | |||
printf ( "HEATED_PLATE\n" ); | 75 | |||
printf ( " Serial version\n" ); | 76 | |||
printf ( " A program to solve for the steady state temperature distribution\n" ); | 77 | |||
printf ( " over a rectangular plate.\n" ); | 78 | |||
printf ( "\n" ); | 79 | |||
printf ( " Spatial grid of %d by %d points.\n", M, N ); | 80 | |||
printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | 81 | |||
82 | ||||
/* Initialize grid and create input file */ | 83 | |||
printf("Initializing grid\n"); | 84 | |||
85 | ||||
inidat(N, M,u,unew); | 86 | |||
87 | ||||
prtdat(N, M,u, "initial.dat"); | 88 | |||
89 | ||||
printf("Start computing\n\n"); | 90 | |||
91 | ||||
int iter=0; | 92 | |||
93 | ||||
/* | 94 | |||
* iterate until the new solution unew differs from the old solution u | 95 | |||
* by no more than EPSILON. | 96 | |||
* */ | 97 | |||
98 | ||||
while(diff> EPSILON) { | 99 | |||
100 | ||||
update(N, M, u, unew,&diff); | 101 | |||
102 | ||||
if(iter%ITER_PRINT==0) | 103 | |||
104 | ||||
printf("Iteration %d, diff = %f\n ", iter,diff); | 105 | |||
106 | ||||
iter++; | 107 | |||
} | 108 | |||
109 | ||||
prtdat(N, M, u, "final.dat"); | 110 | |||
111 | ||||
free(u); | 112 | |||
free(unew); | 113 | |||
} | 114 | |||
115 | ||||
116 | ||||
117 | ||||
/**************************************************************************** | 118 | |||
* subroutine update | 119 | |||
****************************************************************************/ | 120 | |||
void update(int nx,int ny, float *u, float *unew, float * diff) | 121 | |||
{ | 122 | |||
int ix, iy; | 123 | |||
*diff=0.0; | 124 | |||
125 | ||||
for (ix = 1; ix < nx-1; ix++) { | 126 | |||
for (iy = 1; iy < ny-1; iy++) { | 127 | |||
unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | 128 | |||
; | 129 | |||
if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 130 | |||
{ | 131 | |||
*diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 132 | |||
} | 133 | |||
} | 134 | |||
135 | ||||
} | 136 | |||
137 | ||||
138 | ||||
for (ix = 1; ix < nx-1; ix++) { | 139 | |||
for (iy = 1; iy < ny-1; iy++) { | 140 | |||
u[ix*ny+iy] = unew[ix*ny+iy]; | 141 | |||
} | 142 | |||
} | 143 | |||
144 | ||||
} | 145 | |||
146 | ||||
/***************************************************************************** | 147 | |||
* Initialize Data | 148 | |||
*****************************************************************************/ | 149 | |||
void inidat(int nx, int ny, float *u, float *unew) | 150 | |||
{ | 151 | |||
int ix, iy; | 152 | |||
153 | ||||
/* | 154 | |||
*Set boundary data and interrior values | 155 | |||
* */ | 156 |