Commit 1e6ef8e72e286128c10aeb45273e3a2705c92230
1 parent
6a98a5afa7
Exists in
master
Steady state heat
Showing 2 changed files with 436 additions and 0 deletions Side-by-side Diff
lab3/omp_heat2D.c
View file @
1e6ef8e
1 | +/**************************************************************************** | |
2 | + * DESCRIPTION: | |
3 | + * Serial HEAT2D Example - C Version | |
4 | + * This example is based on a simplified | |
5 | + * two-dimensional heat equation domain decomposition. The initial | |
6 | + * temperature is computed to be high in the middle of the domain and | |
7 | + * zero at the boundaries. The boundaries are held at zero throughout | |
8 | + * the simulation. During the time-stepping, an array containing two | |
9 | + * domains is used; these domains alternate between old data and new data. | |
10 | + * | |
11 | + * The physical region, and the boundary conditions, are suggested | |
12 | + by this diagram; | |
13 | + | |
14 | + u = 0 | |
15 | + +------------------+ | |
16 | + | | | |
17 | + u = 100 | | u = 100 | |
18 | + | | | |
19 | + +------------------+ | |
20 | + u = 100 | |
21 | + | |
22 | +Interrior point : | |
23 | + u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | + | |
25 | + ****************************************************************************/ | |
26 | +#include <stdio.h> | |
27 | +#include <stdlib.h> | |
28 | +#include <math.h> | |
29 | +#include <omp.h> | |
30 | + | |
31 | +#define N 500 | |
32 | +#define M 500 | |
33 | + | |
34 | +#define ITER_PRINT 100 | |
35 | +#define PRINT_DATA 1 | |
36 | + | |
37 | +#define EPSILON 1e-1 | |
38 | + | |
39 | + | |
40 | +void update(int nx,int ny, float *u, float *unew, float * diff); | |
41 | +void inidat(int nx, int ny, float *u, float *unew); | |
42 | +void prtdat(int nx, int ny, float *u,const char *fnam); | |
43 | + | |
44 | + | |
45 | + | |
46 | + | |
47 | +int main(int argc, char *argv[]) | |
48 | +{ | |
49 | + | |
50 | + float diff=1.0; | |
51 | + | |
52 | + float *u = (float *)malloc(N * M * sizeof(float)); | |
53 | + float *unew = (float *)malloc(N * M * sizeof(float)); | |
54 | + | |
55 | + if(u==0 || unew ==0) | |
56 | + { | |
57 | + perror("Can't allocated data\n"); | |
58 | + return -1; | |
59 | + } | |
60 | + | |
61 | + printf ( "\n" ); | |
62 | + printf ( "HEATED_PLATE\n" ); | |
63 | + printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | |
64 | + printf ( " A program to solve for the steady state temperature distribution\n" ); | |
65 | + printf ( " over a rectangular plate.\n" ); | |
66 | + printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | |
67 | + | |
68 | + | |
69 | + /* Initialize grid and create input file */ | |
70 | + printf("Initializing grid\n"); | |
71 | + | |
72 | + inidat(N, M,u,unew); | |
73 | + | |
74 | + prtdat(N, M,u, "initial.dat"); | |
75 | + | |
76 | + | |
77 | + printf("Start computing\n"); | |
78 | + | |
79 | + int iter=0; | |
80 | + | |
81 | + /* | |
82 | + * iterate until the new solution unew differs from the old solution u | |
83 | + * by no more than EPSILON. | |
84 | + * */ | |
85 | + | |
86 | + while(diff> EPSILON) { | |
87 | + | |
88 | + update(N, M, u, unew,&diff); | |
89 | + | |
90 | + if(iter%ITER_PRINT==0) | |
91 | + printf("Iteration %d, diff = %f\n ", iter,diff); | |
92 | + | |
93 | + iter++; | |
94 | + } | |
95 | + | |
96 | + prtdat(N, M, u, "final.dat"); | |
97 | + | |
98 | + free(u); | |
99 | + free(unew); | |
100 | +} | |
101 | + | |
102 | + | |
103 | + | |
104 | +/**************************************************************************** | |
105 | + * subroutine update | |
106 | + ****************************************************************************/ | |
107 | +void update(int nx,int ny, float *u, float *unew, float * diff) | |
108 | +{ | |
109 | + int ix, iy; | |
110 | + *diff=0.0; | |
111 | + | |
112 | +#pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | |
113 | + for (ix = 1; ix < nx-1; ix++) { | |
114 | + for (iy = 1; iy < ny-1; iy++) { | |
115 | + unew[ix*ny+iy] = | |
116 | + (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | |
117 | + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | |
118 | + | |
119 | + } | |
120 | + } | |
121 | + | |
122 | +//compute reduction | |
123 | + | |
124 | + | |
125 | + float mydiff; | |
126 | + | |
127 | +#pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | |
128 | + { | |
129 | +mydiff=0.0; | |
130 | +#pragma omp for | |
131 | + for (ix = 1; ix < nx-1; ix++) { | |
132 | + for (iy = 1; iy < ny-1; iy++) { | |
133 | + if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
134 | + { | |
135 | + mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
136 | + } | |
137 | + } | |
138 | + } | |
139 | + | |
140 | + | |
141 | +# pragma omp critical | |
142 | + { | |
143 | + if (*diff < mydiff ) | |
144 | + { | |
145 | + *diff = mydiff; | |
146 | + } | |
147 | + } | |
148 | + | |
149 | + | |
150 | +#pragma omp for | |
151 | + for (ix = 1; ix < nx-1; ix++) { | |
152 | + for (iy = 1; iy < ny-1; iy++) { | |
153 | + u[ix*ny+iy] = unew[ix*ny+iy]; | |
154 | + } | |
155 | + } | |
156 | + | |
157 | + | |
158 | + | |
159 | + | |
160 | + } | |
161 | +} | |
162 | + | |
163 | +/***************************************************************************** | |
164 | + * Initialize Data | |
165 | + *****************************************************************************/ | |
166 | +void inidat(int nx, int ny, float *u, float *unew) | |
167 | +{ | |
168 | + int ix, iy; | |
169 | + | |
170 | + /* | |
171 | + *Set boundary data and interrior values | |
172 | + * */ | |
173 | + for (ix = 0; ix < nx; ix++) | |
174 | + for (iy = 0; iy < ny; iy++) { | |
175 | + | |
176 | + if(ix==0) | |
177 | + { | |
178 | + u[ix*ny+iy]=0.0; | |
179 | + } | |
180 | + else | |
181 | + if(iy==0 && ix!=0) | |
182 | + { | |
183 | + u[ix*ny+iy]=100.0; | |
184 | + }else | |
185 | + | |
186 | + if(ix==nx-1) | |
187 | + { | |
188 | + u[ix*ny+iy]=100.0; | |
189 | + }else | |
190 | + | |
191 | + if(iy==ny-1 && ix!=0) | |
192 | + { | |
193 | + u[ix*ny+iy]=100.0; | |
194 | + }else | |
195 | + | |
196 | + u[ix*ny+iy]=( float ) ( 2 * nx + 2 * ny - 4 ); | |
197 | + } | |
198 | +} | |
199 | + | |
200 | +/************************************************************************** | |
201 | + * Print Data to files | |
202 | + **************************************************************************/ | |
203 | +void prtdat(int nx, int ny, float *u,const char *fnam) | |
204 | +{ | |
205 | + | |
206 | + int ix, iy; | |
207 | + FILE *fp; | |
208 | + | |
209 | + if(ITER_PRINT==0)return; | |
210 | + | |
211 | + fp = fopen(fnam, "w"); | |
212 | + | |
213 | + for (ix = 0 ; ix < nx; ix++) { | |
214 | + for (iy =0; iy < ny; iy++) { | |
215 | + | |
216 | + fprintf(fp, "%8.3f", u[ix*ny+iy]); | |
217 | + | |
218 | + if(iy!=ny-1) | |
219 | + { | |
220 | + fprintf(fp, " "); | |
221 | + }else | |
222 | + { | |
223 | + fprintf(fp, "\n"); | |
224 | + } | |
225 | + } | |
226 | + } | |
227 | + | |
228 | + fclose(fp); | |
229 | +} |
lab3/ser_heat2D.c
View file @
1e6ef8e
1 | +/**************************************************************************** | |
2 | + * DESCRIPTION: | |
3 | + * Serial HEAT2D Example - C Version | |
4 | + * This example is based on a simplified | |
5 | + * two-dimensional heat equation domain decomposition. The initial | |
6 | + * temperature is computed to be high in the middle of the domain and | |
7 | + * zero at the boundaries. The boundaries are held at zero throughout | |
8 | + * the simulation. During the time-stepping, an array containing two | |
9 | + * domains is used; these domains alternate between old data and new data. | |
10 | + * | |
11 | + * The physical region, and the boundary conditions, are suggested | |
12 | + by this diagram; | |
13 | + | |
14 | + u = 0 | |
15 | + +------------------+ | |
16 | + | | | |
17 | + u = 100 | | u = 100 | |
18 | + | | | |
19 | + +------------------+ | |
20 | + u = 100 | |
21 | + | |
22 | +Interrior point : | |
23 | + u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | + | |
25 | + ****************************************************************************/ | |
26 | +#include <stdio.h> | |
27 | +#include <stdlib.h> | |
28 | +#include <math.h> | |
29 | + | |
30 | +#define N 200 | |
31 | +#define M 200 | |
32 | + | |
33 | +#define ITER_PRINT 100 | |
34 | +#define PRINT_DATA 1 | |
35 | + | |
36 | +#define EPSILON 1e-1 | |
37 | + | |
38 | + | |
39 | +void update(int nx,int ny, float *u, float *unew, float * diff); | |
40 | +void inidat(int nx, int ny, float *u, float *unew); | |
41 | +void prtdat(int nx, int ny, float *u,const char *fnam); | |
42 | + | |
43 | + | |
44 | + | |
45 | + | |
46 | +int main(int argc, char *argv[]) | |
47 | +{ | |
48 | + | |
49 | + float diff=1.0; | |
50 | + | |
51 | + float *u = (float *)malloc(N * M * sizeof(float)); | |
52 | + float *unew = (float *)malloc(N * M * sizeof(float)); | |
53 | + | |
54 | + if(u==0 || unew ==0) | |
55 | + { | |
56 | + perror("Can't allocated data\n"); | |
57 | + return -1; | |
58 | + } | |
59 | + | |
60 | + printf ( "\n" ); | |
61 | + printf ( "HEATED_PLATE\n" ); | |
62 | + printf ( " Serial version\n" ); | |
63 | + printf ( " A program to solve for the steady state temperature distribution\n" ); | |
64 | + printf ( " over a rectangular plate.\n" ); | |
65 | + printf ( "\n" ); | |
66 | + printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | |
67 | + | |
68 | + | |
69 | + /* Initialize grid and create input file */ | |
70 | + printf("Initializing grid\n"); | |
71 | + | |
72 | + inidat(N, M,u,unew); | |
73 | + | |
74 | + prtdat(N, M,u, "initial.dat"); | |
75 | + | |
76 | + | |
77 | + printf("Start computing\n"); | |
78 | + | |
79 | + int iter=0; | |
80 | + | |
81 | + /* | |
82 | + * iterate until the new solution unew differs from the old solution u | |
83 | + * by no more than EPSILON. | |
84 | + * */ | |
85 | + | |
86 | + while(diff> EPSILON) { | |
87 | + | |
88 | + update(N, M, u, unew,&diff); | |
89 | + | |
90 | + if(iter%ITER_PRINT==0) | |
91 | + printf("Iteration %d, diff = %f\n ", iter,diff); | |
92 | + | |
93 | + iter++; | |
94 | + } | |
95 | + | |
96 | + prtdat(N, M, u, "final.dat"); | |
97 | + | |
98 | + free(u); | |
99 | + free(unew); | |
100 | +} | |
101 | + | |
102 | + | |
103 | + | |
104 | +/**************************************************************************** | |
105 | + * subroutine update | |
106 | + ****************************************************************************/ | |
107 | +void update(int nx,int ny, float *u, float *unew, float * diff) | |
108 | +{ | |
109 | + int ix, iy; | |
110 | + *diff=0.0; | |
111 | + | |
112 | + for (ix = 1; ix < nx-1; ix++) { | |
113 | + for (iy = 1; iy < ny-1; iy++) { | |
114 | + unew[ix*ny+iy] = | |
115 | + (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | |
116 | + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | |
117 | + | |
118 | + if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
119 | + { | |
120 | + *diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
121 | + } | |
122 | + } | |
123 | + | |
124 | + } | |
125 | + | |
126 | + | |
127 | + for (ix = 1; ix < nx-1; ix++) { | |
128 | + for (iy = 1; iy < ny-1; iy++) { | |
129 | + u[ix*ny+iy] = unew[ix*ny+iy]; | |
130 | + } | |
131 | + } | |
132 | + | |
133 | +} | |
134 | + | |
135 | +/***************************************************************************** | |
136 | + * Initialize Data | |
137 | + *****************************************************************************/ | |
138 | +void inidat(int nx, int ny, float *u, float *unew) | |
139 | +{ | |
140 | + int ix, iy; | |
141 | + | |
142 | + /* | |
143 | + *Set boundary data and interrior values | |
144 | + * */ | |
145 | + for (ix = 0; ix < nx; ix++) | |
146 | + for (iy = 0; iy < ny; iy++) { | |
147 | + | |
148 | + if(ix==0) | |
149 | + { | |
150 | + u[ix*ny+iy]=0.0; | |
151 | + } | |
152 | + else | |
153 | + if(iy==0 && ix!=0) | |
154 | + { | |
155 | + u[ix*ny+iy]=100.0; | |
156 | + }else | |
157 | + | |
158 | + if(ix==nx-1) | |
159 | + { | |
160 | + u[ix*ny+iy]=100.0; | |
161 | + }else | |
162 | + | |
163 | + if(iy==ny-1 && ix!=0) | |
164 | + { | |
165 | + u[ix*ny+iy]=100.0; | |
166 | + }else | |
167 | + | |
168 | + u[ix*ny+iy]=( float ) ( 2 * nx + 2 * ny - 4 ); | |
169 | + } | |
170 | +} | |
171 | + | |
172 | +/************************************************************************** | |
173 | + * Print Data to files | |
174 | + **************************************************************************/ | |
175 | +void prtdat(int nx, int ny, float *u,const char *fnam) | |
176 | +{ | |
177 | + | |
178 | + int ix, iy; | |
179 | + FILE *fp; | |
180 | + | |
181 | + if(ITER_PRINT==0)return; | |
182 | + | |
183 | + fp = fopen(fnam, "w"); | |
184 | + | |
185 | + for (ix = 0 ; ix < nx; ix++) { | |
186 | + for (iy =0; iy < ny; iy++) { | |
187 | + | |
188 | + fprintf(fp, "%8.3f", u[ix*ny+iy]); | |
189 | + | |
190 | + if(iy!=ny-1) | |
191 | + { | |
192 | + fprintf(fp, " "); | |
193 | + }else | |
194 | + { | |
195 | + fprintf(fp, "\n"); | |
196 | + } | |
197 | + } | |
198 | + } | |
199 | + | |
200 | + fclose(fp); | |
201 | +} |