omp_heat2D.c
5.82 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/****************************************************************************
* DESCRIPTION:
* Serial HEAT2D Example - C Version
* This example is based on a simplified
* two-dimensional heat equation domain decomposition. The initial
* temperature is computed to be high in the middle of the domain and
* zero at the boundaries. The boundaries are held at zero throughout
* the simulation. During the time-stepping, an array containing two
* domains is used; these domains alternate between old data and new data.
*
* The physical region, and the boundary conditions, are suggested
by this diagram;
u = 0
+------------------+
| |
u = 100 | | u = 100
| |
+------------------+
u = 100
Interrior point :
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] )
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <omp.h>
#define NN 50
#define MM 50
#define ITER_PRINT 100
#define PRINT_DATA 1
#define _EPSILON 0.001
float update(int nx,int ny, float *u, float *unew);
void inidat(int nx, int ny, float *u, float *unew);
void prtdat(int nx, int ny, float *u,const char *fnam);
int main(int argc, char *argv[])
{
float diff=1.0;
float EPSILON=_EPSILON;
int N=NN,M=MM;
if(argc !=3)
{
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]);
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n");
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n");
return -1;
}
N = M = atoi(argv[1]);
EPSILON = atof(argv[2]);
float *u = (float *)malloc(N * M * sizeof(float));
float *unew = (float *)malloc(N * M * sizeof(float));
if(u==0 || unew ==0)
{
perror("Can't allocated data\n");
return -1;
}
printf ( "\n" );
printf ( "HEATED_PLATE\n" );
printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() );
printf ( " A program to solve for the steady state temperature distribution\n" );
printf ( " over a rectangular plate.\n" );
printf ( " Spatial grid of %d by %d points.\n\n", M, N );
/* Initialize grid and create input file */
printf("Initializing grid\n");
inidat(N, M,u,unew);
prtdat(N, M,u, "initial.dat");
printf("Start computing\n");
int iter=0;
/*
* iterate until the new solution unew differs from the old solution u
* by no more than EPSILON.
* */
while(diff> EPSILON) {
diff = update(N, M, u, unew);
if(iter%ITER_PRINT==0)
printf("Iteration %d, diff = %f\n ", iter,diff);
iter++;
}
prtdat(N, M, u, "final.dat");
free(u);
free(unew);
}
/****************************************************************************
* subroutine update
****************************************************************************/
float update(int nx,int ny, float *u, float *unew)
{
int ix, iy;
float diff=0.0;
#pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy)
for (ix = 1; ix < nx-1; ix++) {
for (iy = 1; iy < ny-1; iy++) {
unew[ix*ny+iy] =
(u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] +
u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0;
}
}
//compute reduction
float mydiff;
/**
* IMPLEMENT OMP REDUCE MAX
*/
#pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff)
{
mydiff=0.0;
#pragma omp for
for (ix = 1; ix < nx-1; ix++) {
for (iy = 1; iy < ny-1; iy++) {
if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] ))
{
mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] );
}
}
}
#pragma omp critical
{
if (diff < mydiff )
{
diff = mydiff;
}
}
/*
* COPY OLD DATA
*/
#pragma omp for
for (ix = 1; ix < nx-1; ix++) {
for (iy = 1; iy < ny-1; iy++) {
u[ix*ny+iy] = unew[ix*ny+iy];
}
}
}
return diff;
}
/*****************************************************************************
* Initialize Data
*****************************************************************************/
void inidat(int nx, int ny, float *u, float *unew)
{
int ix, iy;
/*
*Set boundary data and interrior values
* */
#pragma omp parallel private (ix,iy)
{
// interior points
#pragma omp for
for (ix = 1; ix < nx-1; ix++)
for (iy = 1; iy < ny-1; iy++) {
u[ix*ny+iy]=5.0;
}
//boundary left
#pragma omp for
for (ix = 1; ix < nx-1; ix++){
u[ix*ny]=100.0;
}
//boundary right
#pragma omp for
for (ix = 1; ix < nx-1; ix++){
u[ix*ny+ (ny-1)]=100.0;
}
//boundary down
#pragma omp for
for (iy = 0; iy < ny; iy++){
u[(nx-1)*(ny)+iy]=100.0;
}
//boundary top
#pragma omp for
for (iy = 0; iy < ny; iy++){
u[iy]=0.0;
}
}
}
/**************************************************************************
* Print Data to files
**************************************************************************/
void prtdat(int nx, int ny, float *u,const char *fnam)
{
int ix, iy;
FILE *fp;
if(ITER_PRINT==0)return;
fp = fopen(fnam, "w");
for (ix = 0 ; ix < nx; ix++) {
for (iy =0; iy < ny; iy++) {
fprintf(fp, "%8.3f", u[ix*ny+iy]);
if(iy!=ny-1)
{
fprintf(fp, " ");
}else
{
fprintf(fp, "\n");
}
}
}
fclose(fp);
}