mpi_heat2D.c
8.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/****************************************************************************
* DESCRIPTION:
* Serial HEAT2D Example - C Version
* This example is based on a simplified
* two-dimensional heat equation domain decomposition. The initial
* temperature is computed to be high in the middle of the domain and
* zero at the boundaries. The boundaries are held at zero throughout
* the simulation. During the time-stepping, an array containing two
* domains is used; these domains alternate between old data and new data.
*
* The physical region, and the boundary conditions, are suggested
by this diagram;
u = 0
+------------------+
| |
u = 100 | | u = 100
| |
| |
| |
| |
+------------------+
u = 100
Interrior point :
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] )
PARALLEL MPI VERSION :
+-------------------+
| | P0 m=(n-2)/P +2
+-------------------+
| | P1
+-------------------+
n | | ..
+-------------------+
| | Pq
+-------------------+
<-------- n -------->
<-------n-2 ------>
****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi/mpi.h>
#define NN 50
#define MM 50
#define RING 100
#define ITER_PRINT 100
#define PRINT_DATA 1
#define MAX_ITER 1000
#define _EPSILON 0.01
float update(int rank,int size, int nx,int ny, float *u, float *unew);
void inidat(int rank, int size, int nx, int ny, float *u, float *unew);
void prtdat(int rank, int size, int nx, int ny, float *u,const char *fnam);
int main(int argc, char *argv[])
{
int N=NN,M=MM;
int rank,size;
float EPSILON=_EPSILON;
/* INITIALIZE MPI */
MPI_Init(&argc, &argv);
/* GET THE PROCESSOR ID AND NUMBER OF PROCESSORS */
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
//Only Rank 0 read application parameters
if(rank==0) {
if(argc !=3)
{
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]);
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n");
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n");
return -1;
}
N = M = atoi(argv[1]);
EPSILON = atof(argv[2]);
if(N % size!=0)
{
fprintf(stderr,"Grid Size MUST be divisible by the number of processors !");
return -1;
}
}
//Wait for rank 0 , all process start here
MPI_Barrier(MPI_COMM_WORLD);
//Exchange N
MPI_Bcast(&N , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD);
//Exchange EPSILON
MPI_Bcast(&EPSILON , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD);
//local size
M = (N-2) / size + 2 ;
float *u = (float *)malloc(N * M * sizeof(float));
float *unew = (float *)malloc(N * M * sizeof(float));
if(u==0 || unew ==0)
{
perror("Can't allocated data\n");
return -1;
}
if(rank==0) {
printf ( "\n" );
printf ( "HEATED_PLATE\n" );
printf ( " Parallel MPI version using %d processors \n",size );
printf ( " A program to solve for the steady state temperature distribution\n" );
printf ( " over a rectangular plate.\n" );
printf ( "\n" );
printf ( " Spatial grid of %d by %d points.\n", N, N );
printf ( " Each processor will use grid of %d by %d points.\n", M, N );
printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON);
}
/* Initialize grid and create input file
* each process initialize its part
* */
inidat(rank,size,M,N,u,unew);
prtdat(rank,size,M,N,u, "initial.dat");
float diff, globaldiff=1.0;
int iter=0;
/*
* iterate (JACOBI ITERATION) until the new solution unew differs from the old solution u
* by no more than EPSILON.
**/
while(globaldiff> EPSILON) {
diff= update(rank,size,M,N, u, unew);
/**
* COMPUTE GLOBAL CONVERGENCE
* */
MPI_Allreduce(&diff, &globaldiff , 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
if(rank==0)
if(iter%ITER_PRINT==0)
printf("Processor #%d, iteration %d, epsilon = %f\n ", rank,iter,globaldiff);
iter++;
}
prtdat(rank,size,M,N, u, "final.dat");
free(u);
free(unew);
MPI_Finalize();
}
/****************************************************************************
* subroutine update
****************************************************************************/
float update(int rank, int size, int nx,int ny, float *u, float *unew){
int ix, iy;
float diff=0.0;
MPI_Status status;
/*
* EXCHANGE GHOST CELL
*/
if (rank > 0 && rank< size-1)
{
MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0,
&u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status);
MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1,
&u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status);
}
else if (rank == 0)
MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0,
&u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status);
else if (rank == size-1)
MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1,
&u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status);
/**
* PERFORM LOCAL COMPUTATION
* */
for (ix = 1; ix < nx-1; ix++) {
for (iy = 1; iy < ny-1; iy++) {
unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0
;
if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] ))
{
diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] );
}
}
}
for (ix = 1; ix < nx-1; ix++) {
for (iy = 1; iy < ny-1; iy++) {
u[ix*ny+iy] = unew[ix*ny+iy];
}
}
return diff;
}
/*****************************************************************************
* Initialize Data
*****************************************************************************/
void inidat(int rank, int size,int nx, int ny, float *u, float *unew)
{
int ix, iy;
/*
*Set boundary data and interrior values
* */
// interior points
for (ix = 1; ix < nx-1; ix++)
for (iy = 1; iy < ny-1; iy++) {
u[ix*ny+iy]=0.0;
}
//boundary left
for (ix = 0; ix < nx; ix++){
u[ix*ny]=100.0;
}
//boundary right
for (ix = 0; ix < nx; ix++){
u[ix*ny+ (ny-1)]=100.0;
}
//boundary down
for (iy = 1; iy < ny-1; iy++){
if(rank==size-1) {
u[(nx-1)*(ny)+iy]=100.0;
u[0]=100.0;
}else
{
u[(nx-1)*(ny)+iy]=0.0;
}
}
//boundary top
for (iy = 1; iy < ny-1; iy++){
if(rank==0)
u[iy]=100.0;
else
u[iy]=0.0;
}
}
/***************************************************************************
* Print Data to files
**************************************************************************/
void print2file(int rank, int nx, int ny, float *u,const char *fname)
{
int ix, iy;
FILE *fp;
char str[255];
sprintf(str, "%d_%s", rank,fname);
fp = fopen(str, "w");
for (ix = 0 ; ix < nx; ix++) {
for (iy =0; iy < ny; iy++) {
fprintf(fp, "%6.2f ", u[ix*ny+iy]);
}
fputc ( '\n', fp);
}
fclose(fp);
}
void prtdat(int rank, int size,int nx, int ny, float *u,const char *fname)
{
if(ITER_PRINT==0)return;
/**
* USE TOKEN RING to write to unique file
* 0 will rite first and then 1, 2, ... size-1
*
* * */
print2file(rank,nx,ny,u,fname);
}