Blame view

lab3/ser_heat2D.c 4.78 KB
1e6ef8e72   kmazouzi   Steady state heat
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  /****************************************************************************
   * DESCRIPTION:  
   *   Serial HEAT2D Example - C Version
   *   This example is based on a simplified 
   *   two-dimensional heat equation domain decomposition.  The initial 
   *   temperature is computed to be high in the middle of the domain and 
   *   zero at the boundaries.  The boundaries are held at zero throughout 
   *   the simulation.  During the time-stepping, an array containing two 
   *   domains is used; these domains alternate between old data and new data.
   *
   *  The physical region, and the boundary conditions, are suggested
      by this diagram;
  
                     u = 0
               +------------------+
               |                  |
      u = 100  |                  | u = 100
               |                  |
               +------------------+
                     u = 100
  
  Interrior point :
    u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] )
  
   ****************************************************************************/
  #include <stdio.h>
  #include <stdlib.h>
  #include <math.h>
  
  #define N 200
  #define M 200  
  
  #define ITER_PRINT 100
  #define PRINT_DATA 1
  
  #define EPSILON 1e-1
  
  
  void update(int nx,int ny, float *u, float *unew, float * diff);
  void inidat(int nx, int ny, float *u, float *unew); 
  void prtdat(int nx, int ny, float *u,const char *fnam);
  
  
  
  
  int main(int argc, char *argv[])
  {
  
      float diff=1.0;
  
      float *u     = (float *)malloc(N * M * sizeof(float));
      float *unew  = (float *)malloc(N * M * sizeof(float));
   
      if(u==0 || unew ==0)
      {
          perror("Can't allocated data
  ");
          return -1;
      }
  
       printf ( "
  " );
       printf ( "HEATED_PLATE
  " );
       printf ( "  Serial version
  " );
       printf ( "  A program to solve for the steady state temperature distribution
  " );
       printf ( "  over a rectangular plate.
  " );
       printf ( "
  " );
       printf ( "  Spatial grid of %d by %d points.
  
  ", M, N );
  
  
      /* Initialize grid and create input file */
      printf("Initializing grid
  ");
      
      inidat(N, M,u,unew);
  
      prtdat(N, M,u, "initial.dat");
      
     
      printf("Start computing
  ");
  
      int iter=0;
  
      /* 
       *   iterate until the  new solution unew differs from the old solution u
       *     by no more than EPSILON.
       *     */
       
      while(diff> EPSILON) {
  
          update(N, M, u, unew,&diff);
      
          if(iter%ITER_PRINT==0)
          printf("Iteration %d, diff = %f
   ", iter,diff);
  
          iter++;
      }
  
      prtdat(N, M, u, "final.dat");
       
      free(u);
      free(unew);
  }
  
  
  
  /****************************************************************************
   *  subroutine update
   ****************************************************************************/
  void update(int nx,int ny, float *u, float *unew, float * diff)
  {
      int ix, iy;
      *diff=0.0;
  
      for (ix = 1; ix < nx-1; ix++) {
          for (iy = 1; iy < ny-1; iy++) {
              unew[ix*ny+iy] =  
                  (u[(ix+1)*ny+iy] +  u[(ix-1)*ny+iy] +
                   u[ix*ny+iy+1] +  u[ix*ny+iy-1] )/4.0;
  
              if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] ))
              {
                  *diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] );
              }
          }
  
      }
  
  
      for (ix = 1; ix < nx-1; ix++) {
          for (iy = 1; iy < ny-1; iy++) {
              u[ix*ny+iy] = unew[ix*ny+iy]; 
          }
      }   
  
  }
  
  /*****************************************************************************
   *  Initialize Data
   *****************************************************************************/
  void inidat(int nx, int ny, float *u, float *unew) 
  {
      int ix, iy;
  
      /*
       *Set boundary data and interrior values
       * */
      for (ix = 0; ix < nx; ix++) 
          for (iy = 0; iy < ny; iy++) { 
  
              if(ix==0)
              {
                  u[ix*ny+iy]=0.0; 
              }
              else          
              if(iy==0 && ix!=0)
              {
                  u[ix*ny+iy]=100.0;
              }else
             
              if(ix==nx-1)
              {
                  u[ix*ny+iy]=100.0;
              }else
  
              if(iy==ny-1 && ix!=0)
              {   
                  u[ix*ny+iy]=100.0;
              }else
  
               u[ix*ny+iy]=( float ) ( 2 * nx + 2 * ny - 4 );
          }
  }
  
  /**************************************************************************
   * Print Data to files
   **************************************************************************/
  void prtdat(int nx, int ny, float *u,const char *fnam)
  {
   
      int ix, iy;
      FILE *fp;
  
      if(ITER_PRINT==0)return;
      
      fp = fopen(fnam, "w");
  
      for (ix = 0 ; ix < nx; ix++) {
          for (iy =0; iy < ny; iy++) {
  
              fprintf(fp, "%8.3f", u[ix*ny+iy]);
  
              if(iy!=ny-1)
              {
                  fprintf(fp, " ");
              }else
              {
                  fprintf(fp, "
  ");
              }
          }
      }
  
      fclose(fp);
  }