Commit 399d77d3dc57027ebca78e9b57540afd0f49b9ca
1 parent
3e9c3b6318
Exists in
main
another version
Showing 9 changed files with 97 additions and 54 deletions Side-by-side Diff
chapters/CBR.aux
View file @
399d77d
chapters/CBR.tex
View file @
399d77d
... | ... | @@ -52,9 +52,9 @@ |
52 | 52 | |
53 | 53 | --- Méthodes d'ensemble |
54 | 54 | |
55 | -Uysal et al. [...] mettent en œuvre un RáPC avec une méthode d'agrégation bootstrap (bagging) pour améliorer la précision du CBR et réduire la variance. | |
55 | +\cite{buildings13030651} mettent en œuvre un RáPC avec une méthode d'agrégation bootstrap (bagging) pour améliorer la précision du CBR et réduire la variance. | |
56 | 56 | |
57 | -Un modèle d'ensemble fondé sur le raisonnement à partir de cas est proposé par Yu et al. [...] appliqué à la prédiction financière et au remplissage des données manquantes. Dans ce cas, pour retrouver les plus proches voisins, le modèle utilise trois mesures de distance différentes et une étape de vote pour l'intégration. Le modèle a été testé avec une base de données comportant onze dimensions d'informations financières provenant de 249 entreprises. La comparaison est faite avec deux objectifs. Premièrement, le remplissage des données manquantes avec d'autres algorithmes tels que KNN ou RandomForest, et deuxièmement, la comparaison de la prédiction avec des algorithmes uniques utilisant une métrique de distance spécifique. En effet, les résultats montrent une meilleure performance dans le remplissage des données manquantes et les meilleurs résultats dans la prédiction. | |
57 | +Un modèle d'ensemble fondé sur le raisonnement à partir de cas est proposé par \cite{YU2023110163} appliqué à la prédiction financière et au remplissage des données manquantes. Dans ce cas, pour retrouver les plus proches voisins, le modèle utilise trois mesures de distance différentes et une étape de vote pour l'intégration. Le modèle a été testé avec une base de données comportant onze dimensions d'informations financières provenant de 249 entreprises. La comparaison est faite avec deux objectifs. Premièrement, le remplissage des données manquantes avec d'autres algorithmes tels que KNN ou RandomForest, et deuxièmement, la comparaison de la prédiction avec des algorithmes uniques utilisant une métrique de distance spécifique. En effet, les résultats montrent une meilleure performance dans le remplissage des données manquantes et les meilleurs résultats dans la prédiction. | |
58 | 58 | |
59 | 59 | ---------------------------------- |
60 | 60 |
main.aux
View file @
399d77d
... | ... | @@ -85,9 +85,11 @@ |
85 | 85 | \bibcite{10.1007/978-3-031-63646-2_13}{Soto-Forero et~al., 2024b} |
86 | 86 | \bibcite{SU2022109547}{Su et~al., 2022} |
87 | 87 | \bibcite{8495930}{Supic, 2018} |
88 | +\bibcite{buildings13030651}{Uysal and Sonmez, 2023} | |
88 | 89 | \bibcite{WANG2021331}{Wang et~al., 2021} |
89 | 90 | \bibcite{wolf2024keep}{Wolf et~al., 2024} |
90 | 91 | \bibcite{9627973}{Xu et~al., 2021} |
92 | +\bibcite{YU2023110163}{Yu and Li, 2023} | |
91 | 93 | \bibcite{ZHANG2021100025}{Zhang. and Aslan, 2021} |
92 | 94 | \bibcite{ZHAO2023118535}{Zhao et~al., 2023} |
93 | 95 | \bibcite{Zhou2021}{Zhou and Wang, 2021} |
main.bbl
View file @
399d77d
... | ... | @@ -303,6 +303,12 @@ |
303 | 303 | Technologies: Infrastructure for Collaborative Enterprises (WETICE)}, pages |
304 | 304 | 175--178. |
305 | 305 | |
306 | +\bibitem[Uysal and Sonmez, 2023]{buildings13030651} | |
307 | +Uysal, F. and Sonmez, R. (2023). | |
308 | +\newblock Bootstrap aggregated case-based reasoning method for conceptual cost | |
309 | + estimation. | |
310 | +\newblock {\em Buildings}, 13(3). | |
311 | + | |
306 | 312 | \bibitem[Wang et~al., 2021]{WANG2021331} |
307 | 313 | Wang, F., Liao, F., Li, Y., and Wang, H. (2021). |
308 | 314 | \newblock A new prediction strategy for dynamic multi-objective optimization |
... | ... | @@ -321,6 +327,12 @@ |
321 | 327 | Xu, S., Cai, W., Xia, H., Liu, B., and Xu, J. (2021). |
322 | 328 | \newblock Dynamic metric accelerated method for fuzzy clustering. |
323 | 329 | \newblock {\em IEEE Access}, 9:166838--166854. |
330 | + | |
331 | +\bibitem[Yu and Li, 2023]{YU2023110163} | |
332 | +Yu, L. and Li, M. (2023). | |
333 | +\newblock A case-based reasoning driven ensemble learning paradigm for | |
334 | + financial distress prediction with missing data. | |
335 | +\newblock {\em Applied Soft Computing}, 137:110163. | |
324 | 336 | |
325 | 337 | \bibitem[Zhang. and Aslan, 2021]{ZHANG2021100025} |
326 | 338 | Zhang., K. and Aslan, A.~B. (2021). |
main.bib
View file @
399d77d
... | ... | @@ -1688,4 +1688,32 @@ |
1688 | 1688 | keywords = {Case-based reasoning, Explainable artificial intelligence, Explanation methods, Explanation of image classification}, |
1689 | 1689 | abstract = {Deep learning is especially remarkable in terms of image classification. However, the outcomes of models are not explainable to users due to their complex nature, having an impact on the users’ trust in the provided classifications. To solve this problem, several explanation techniques have been proposed, but they greatly depend on the nature of the images being classified and the users’ perception of the explanations. In this work, we present Case-Based Reasoning as a learning-based solution to the problem of selecting the best explanation method for the image classifications obtained by models. We propose the elicitation of a case base that reflects the human perception of the quality of the explanations and how to reuse this knowledge to select the best explanation approach for a given image classification.} |
1690 | 1690 | } |
1691 | + | |
1692 | +@Article{buildings13030651, | |
1693 | +AUTHOR = {Uysal, Furkan and Sonmez, Rifat}, | |
1694 | +TITLE = {Bootstrap Aggregated Case-Based Reasoning Method for Conceptual Cost Estimation}, | |
1695 | +JOURNAL = {Buildings}, | |
1696 | +VOLUME = {13}, | |
1697 | +YEAR = {2023}, | |
1698 | +NUMBER = {3}, | |
1699 | +ARTICLE-NUMBER = {651}, | |
1700 | +URL = {https://www.mdpi.com/2075-5309/13/3/651}, | |
1701 | +ISSN = {2075-5309}, | |
1702 | +ABSTRACT = {Conceptual cost estimation is an important step in project feasibility decisions when there is not enough information on detailed design and project requirements. Methods that enable quick and reasonably accurate conceptual cost estimates are crucial for achieving successful decisions in the early stages of construction projects. For this reason, numerous machine learning methods proposed in the literature that use different learning mechanisms. In recent years, the case-based reasoning (CBR) method has received particular attention in the literature for conceptual cost estimation of construction projects that use similarity-based learning principles. Despite the fact that CBR provides a powerful and practical alternative for conceptual cost estimation, one of the main criticisms about CBR is its low prediction performance when there is not a sufficient number of cases. This paper presents a bootstrap aggregated CBR method for achieving advancement in CBR research, particularly for conceptual cost estimation of construction projects when a limited number of training cases are available. The proposed learning method is designed so that CBR can learn from a diverse set of training data even when there are not a sufficient number of cases. The performance of the proposed bootstrap aggregated CBR method is evaluated using three data sets. The results revealed that the prediction performance of the new bootstrap aggregated CBR method is better than the prediction performance of the existing CBR method. Since the majority of conceptual cost estimates are made with a limited number of cases, the proposed method provides a contribution to CBR research and practice by improving the existing methods for conceptual cost estimating.}, | |
1703 | +DOI = {10.3390/buildings13030651} | |
1704 | +} | |
1705 | + | |
1706 | +@article{YU2023110163, | |
1707 | +title = {A case-based reasoning driven ensemble learning paradigm for financial distress prediction with missing data}, | |
1708 | +journal = {Applied Soft Computing}, | |
1709 | +volume = {137}, | |
1710 | +pages = {110163}, | |
1711 | +year = {2023}, | |
1712 | +issn = {1568-4946}, | |
1713 | +doi = {https://doi.org/10.1016/j.asoc.2023.110163}, | |
1714 | +url = {https://www.sciencedirect.com/science/article/pii/S1568494623001813}, | |
1715 | +author = {Lean Yu and Mengxin Li}, | |
1716 | +keywords = {Case-based reasoning, Missing data imputation, Financial distress prediction, Imputation method, Ensemble learning}, | |
1717 | +abstract = {Financial distress prediction is often accompanied by missing sample data. For this purpose, a novel case-based reasoning (CBR) driven ensemble learning paradigm is proposed for financial distress prediction with missing data. In the proposed paradigm, three main stages, CBR-driven missing data imputation, CBR-driven single classifiers prediction, and CBR-driven ensemble result output, are involved. In the first stage, the CBR-driven missing data imputation method is used to fill in missing values in the initial dataset. Second, three different CBR-driven single classification models are constructed using Manhattan distance, Euclidean distance, and cosine distance to predict financial distress, respectively. In the final stage, the weighted majority voting strategy is used to ensemble prediction results of the CBR-driven single classification models to improve prediction accuracy and robustness. For illustration and verification, the experiments on datasets with different missing rates of six Chinese listed companies are performed. And corresponding results show that the proposed CBR-driven ensemble learning paradigm can effectively improve the imputation performance and increase the robustness of classification performance, indicating that the proposed CBR-driven ensemble learning paradigm can be used as a competitive solution to financial distress prediction with missing data.} | |
1718 | +} |
main.blg
View file @
399d77d
... | ... | @@ -11,46 +11,46 @@ |
11 | 11 | Warning--entry type for "Daubias2011" isn't style-file defined |
12 | 12 | --line 693 of file main.bib |
13 | 13 | Warning--can't use both volume and number fields in wolf2024keep |
14 | -You've used 54 entries, | |
14 | +You've used 56 entries, | |
15 | 15 | 1935 wiz_defined-function locations, |
16 | - 820 strings with 14869 characters, | |
17 | -and the built_in function-call counts, 24305 in all, are: | |
18 | -= -- 2341 | |
19 | -> -- 1102 | |
20 | -< -- 40 | |
21 | -+ -- 390 | |
22 | -- -- 365 | |
23 | -* -- 2052 | |
24 | -:= -- 4140 | |
25 | -add.period$ -- 174 | |
26 | -call.type$ -- 54 | |
27 | -change.case$ -- 435 | |
28 | -chr.to.int$ -- 53 | |
29 | -cite$ -- 55 | |
30 | -duplicate$ -- 937 | |
31 | -empty$ -- 1680 | |
32 | -format.name$ -- 453 | |
33 | -if$ -- 4883 | |
16 | + 831 strings with 15189 characters, | |
17 | +and the built_in function-call counts, 25006 in all, are: | |
18 | += -- 2409 | |
19 | +> -- 1128 | |
20 | +< -- 42 | |
21 | ++ -- 400 | |
22 | +- -- 373 | |
23 | +* -- 2111 | |
24 | +:= -- 4265 | |
25 | +add.period$ -- 180 | |
26 | +call.type$ -- 56 | |
27 | +change.case$ -- 449 | |
28 | +chr.to.int$ -- 55 | |
29 | +cite$ -- 57 | |
30 | +duplicate$ -- 964 | |
31 | +empty$ -- 1729 | |
32 | +format.name$ -- 467 | |
33 | +if$ -- 5018 | |
34 | 34 | int.to.chr$ -- 2 |
35 | 35 | int.to.str$ -- 0 |
36 | -missing$ -- 59 | |
37 | -newline$ -- 273 | |
38 | -num.names$ -- 184 | |
39 | -pop$ -- 409 | |
36 | +missing$ -- 61 | |
37 | +newline$ -- 283 | |
38 | +num.names$ -- 190 | |
39 | +pop$ -- 417 | |
40 | 40 | preamble$ -- 1 |
41 | -purify$ -- 440 | |
41 | +purify$ -- 454 | |
42 | 42 | quote$ -- 0 |
43 | -skip$ -- 709 | |
43 | +skip$ -- 732 | |
44 | 44 | stack$ -- 0 |
45 | -substring$ -- 1654 | |
46 | -swap$ -- 180 | |
45 | +substring$ -- 1698 | |
46 | +swap$ -- 182 | |
47 | 47 | text.length$ -- 17 |
48 | 48 | text.prefix$ -- 0 |
49 | 49 | top$ -- 0 |
50 | -type$ -- 312 | |
50 | +type$ -- 324 | |
51 | 51 | warning$ -- 1 |
52 | -while$ -- 188 | |
52 | +while$ -- 193 | |
53 | 53 | width$ -- 0 |
54 | -write$ -- 722 | |
54 | +write$ -- 748 | |
55 | 55 | (There were 2 warnings) |
main.log
View file @
399d77d
1 | -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.5.31) 17 APR 2025 16:01 | |
1 | +This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) (preloaded format=pdflatex 2023.5.31) 18 APR 2025 09:15 | |
2 | 2 | entering extended mode |
3 | 3 | restricted \write18 enabled. |
4 | 4 | %&-line parsing enabled. |
5 | 5 | |
6 | 6 | |
... | ... | @@ -1418,17 +1418,17 @@ |
1418 | 1418 | |
1419 | 1419 | [] |
1420 | 1420 | |
1421 | -<./Figures/ModCBR1.png, id=620, 942.52126pt x 624.83438pt> | |
1421 | +<./Figures/ModCBR1.png, id=622, 942.52126pt x 624.83438pt> | |
1422 | 1422 | File: ./Figures/ModCBR1.png Graphic file (type png) |
1423 | 1423 | <use ./Figures/ModCBR1.png> |
1424 | 1424 | Package pdftex.def Info: ./Figures/ModCBR1.png used on input line 66. |
1425 | 1425 | (pdftex.def) Requested size: 427.43153pt x 283.36574pt. |
1426 | -<./Figures/taxonomieEIAH.png, id=623, 984.67876pt x 614.295pt> | |
1426 | +<./Figures/taxonomieEIAH.png, id=625, 984.67876pt x 614.295pt> | |
1427 | 1427 | File: ./Figures/taxonomieEIAH.png Graphic file (type png) |
1428 | 1428 | <use ./Figures/taxonomieEIAH.png> |
1429 | 1429 | Package pdftex.def Info: ./Figures/taxonomieEIAH.png used on input line 72. |
1430 | 1430 | (pdftex.def) Requested size: 427.43153pt x 266.65376pt. |
1431 | -<./Figures/ModCBR2.png, id=626, 1145.27875pt x 545.03625pt> | |
1431 | +<./Figures/ModCBR2.png, id=628, 1145.27875pt x 545.03625pt> | |
1432 | 1432 | File: ./Figures/ModCBR2.png Graphic file (type png) |
1433 | 1433 | <use ./Figures/ModCBR2.png> |
1434 | 1434 | Package pdftex.def Info: ./Figures/ModCBR2.png used on input line 81. |
... | ... | @@ -1466,7 +1466,7 @@ |
1466 | 1466 | |
1467 | 1467 | |
1468 | 1468 | ] |
1469 | -<./Figures/AIVT.png, id=692, 1116.17pt x 512.91624pt> | |
1469 | +<./Figures/AIVT.png, id=696, 1116.17pt x 512.91624pt> | |
1470 | 1470 | File: ./Figures/AIVT.png Graphic file (type png) |
1471 | 1471 | <use ./Figures/AIVT.png> |
1472 | 1472 | Package pdftex.def Info: ./Figures/AIVT.png used on input line 21. |
... | ... | @@ -1536,7 +1536,7 @@ |
1536 | 1536 | Underfull \vbox (badness 10000) has occurred while \output is active [] |
1537 | 1537 | |
1538 | 1538 | [42] |
1539 | -<./Figures/Architecture AI-VT2.png, id=713, 1029.8475pt x 948.54375pt> | |
1539 | +<./Figures/Architecture AI-VT2.png, id=717, 1029.8475pt x 948.54375pt> | |
1540 | 1540 | File: ./Figures/Architecture AI-VT2.png Graphic file (type png) |
1541 | 1541 | <use ./Figures/Architecture AI-VT2.png> |
1542 | 1542 | Package pdftex.def Info: ./Figures/Architecture AI-VT2.png used on input line |
1543 | 1543 | |
... | ... | @@ -1547,12 +1547,12 @@ |
1547 | 1547 | Underfull \vbox (badness 10000) has occurred while \output is active [] |
1548 | 1548 | |
1549 | 1549 | [45] |
1550 | -<./Figures/Layers.png, id=729, 392.46625pt x 216.81pt> | |
1550 | +<./Figures/Layers.png, id=733, 392.46625pt x 216.81pt> | |
1551 | 1551 | File: ./Figures/Layers.png Graphic file (type png) |
1552 | 1552 | <use ./Figures/Layers.png> |
1553 | 1553 | Package pdftex.def Info: ./Figures/Layers.png used on input line 130. |
1554 | 1554 | (pdftex.def) Requested size: 235.48155pt x 130.08699pt. |
1555 | -<./Figures/flow.png, id=731, 721.69624pt x 593.21625pt> | |
1555 | +<./Figures/flow.png, id=735, 721.69624pt x 593.21625pt> | |
1556 | 1556 | File: ./Figures/flow.png Graphic file (type png) |
1557 | 1557 | <use ./Figures/flow.png> |
1558 | 1558 | Package pdftex.def Info: ./Figures/flow.png used on input line 139. |
1559 | 1559 | |
1560 | 1560 | |
1561 | 1561 | |
... | ... | @@ -1581,23 +1581,23 @@ |
1581 | 1581 | Package hyperref Info: bookmark level for unknown algorithm defaults to 0 on in |
1582 | 1582 | put line 111. |
1583 | 1583 | [51] |
1584 | -<./Figures/dataset.png, id=794, 15.13687pt x 8.08058pt> | |
1584 | +<./Figures/dataset.png, id=798, 15.13687pt x 8.08058pt> | |
1585 | 1585 | File: ./Figures/dataset.png Graphic file (type png) |
1586 | 1586 | <use ./Figures/dataset.png> |
1587 | 1587 | Package pdftex.def Info: ./Figures/dataset.png used on input line 132. |
1588 | 1588 | (pdftex.def) Requested size: 427.43153pt x 228.35583pt. |
1589 | -<./Figures/comp2.png, id=797, 14.59627pt x 7.33133pt> | |
1589 | +<./Figures/comp2.png, id=801, 14.59627pt x 7.33133pt> | |
1590 | 1590 | File: ./Figures/comp2.png Graphic file (type png) |
1591 | 1591 | <use ./Figures/comp2.png> |
1592 | 1592 | Package pdftex.def Info: ./Figures/comp2.png used on input line 166. |
1593 | 1593 | (pdftex.def) Requested size: 427.43153pt x 214.72395pt. |
1594 | 1594 | [52] |
1595 | -<./Figures/comp3.png, id=806, 14.59627pt x 7.33133pt> | |
1595 | +<./Figures/comp3.png, id=810, 14.59627pt x 7.33133pt> | |
1596 | 1596 | File: ./Figures/comp3.png Graphic file (type png) |
1597 | 1597 | <use ./Figures/comp3.png> |
1598 | 1598 | Package pdftex.def Info: ./Figures/comp3.png used on input line 174. |
1599 | 1599 | (pdftex.def) Requested size: 427.43153pt x 214.72395pt. |
1600 | -<./Figures/comp4.png, id=808, 14.59627pt x 7.33133pt> | |
1600 | +<./Figures/comp4.png, id=812, 14.59627pt x 7.33133pt> | |
1601 | 1601 | File: ./Figures/comp4.png Graphic file (type png) |
1602 | 1602 | <use ./Figures/comp4.png> |
1603 | 1603 | Package pdftex.def Info: ./Figures/comp4.png used on input line 182. |
... | ... | @@ -1611,7 +1611,7 @@ |
1611 | 1611 | [] |
1612 | 1612 | |
1613 | 1613 | [54 <./Figures/comp2.png>] |
1614 | -<./Figures/metric.png, id=829, 16.95784pt x 7.68225pt> | |
1614 | +<./Figures/metric.png, id=833, 16.95784pt x 7.68225pt> | |
1615 | 1615 | File: ./Figures/metric.png Graphic file (type png) |
1616 | 1616 | <use ./Figures/metric.png> |
1617 | 1617 | Package pdftex.def Info: ./Figures/metric.png used on input line 223. |
... | ... | @@ -1621,7 +1621,7 @@ |
1621 | 1621 | |
1622 | 1622 | [] |
1623 | 1623 | |
1624 | -<./Figures/metric2.png, id=844, 16.48363pt x 7.66327pt> | |
1624 | +<./Figures/metric2.png, id=849, 16.48363pt x 7.66327pt> | |
1625 | 1625 | File: ./Figures/metric2.png Graphic file (type png) |
1626 | 1626 | <use ./Figures/metric2.png> |
1627 | 1627 | Package pdftex.def Info: ./Figures/metric2.png used on input line 282. |
... | ... | @@ -1657,7 +1657,7 @@ |
1657 | 1657 | [65 |
1658 | 1658 | |
1659 | 1659 | ] |
1660 | -<spimufcphdthesis-backpage.pdf, id=899, 597.432pt x 844.83629pt> | |
1660 | +<spimufcphdthesis-backpage.pdf, id=904, 597.432pt x 844.83629pt> | |
1661 | 1661 | File: spimufcphdthesis-backpage.pdf Graphic file (type pdf) |
1662 | 1662 | <use spimufcphdthesis-backpage.pdf> |
1663 | 1663 | Package pdftex.def Info: spimufcphdthesis-backpage.pdf used on input line 386. |
1664 | 1664 | |
... | ... | @@ -1678,10 +1678,10 @@ |
1678 | 1678 | (rerunfilecheck) Checksum: 709766337017814FCC6B98C34BC38006;11107. |
1679 | 1679 | ) |
1680 | 1680 | Here is how much of TeX's memory you used: |
1681 | - 20868 strings out of 476038 | |
1682 | - 355907 string characters out of 5790170 | |
1681 | + 20872 strings out of 476038 | |
1682 | + 355979 string characters out of 5790170 | |
1683 | 1683 | 1873785 words of memory out of 5000000 |
1684 | - 40561 multiletter control sequences out of 15000+600000 | |
1684 | + 40563 multiletter control sequences out of 15000+600000 | |
1685 | 1685 | 612134 words of font info for 143 fonts, out of 8000000 for 9000 |
1686 | 1686 | 1141 hyphenation exceptions out of 8191 |
1687 | 1687 | 126i,14n,133p,1979b,754s stack positions out of 10000i,1000n,20000p,200000b,200000s |
1688 | 1688 | |
... | ... | @@ -1704,10 +1704,10 @@ |
1704 | 1704 | lvetic/uhvr8a.pfb></usr/local/texlive/2023/texmf-dist/fonts/type1/urw/helvetic/ |
1705 | 1705 | uhvro8a.pfb></usr/local/texlive/2023/texmf-dist/fonts/type1/urw/times/utmr8a.pf |
1706 | 1706 | b></usr/local/texlive/2023/texmf-dist/fonts/type1/urw/times/utmri8a.pfb> |
1707 | -Output written on main.pdf (72 pages, 6677150 bytes). | |
1707 | +Output written on main.pdf (72 pages, 6677764 bytes). | |
1708 | 1708 | PDF statistics: |
1709 | - 1023 PDF objects out of 1200 (max. 8388607) | |
1710 | - 860 compressed objects within 9 object streams | |
1711 | - 243 named destinations out of 1000 (max. 500000) | |
1709 | + 1027 PDF objects out of 1200 (max. 8388607) | |
1710 | + 864 compressed objects within 9 object streams | |
1711 | + 245 named destinations out of 1000 (max. 500000) | |
1712 | 1712 | 489 words of extra memory for PDF output out of 10000 (max. 10000000) |
main.pdf
View file @
399d77d
main.synctex.gz
View file @
399d77d