Blame view
src/3dReconst.cpp
4.64 KB
b0bb08d1c init |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#include "3dReconst.h" #include "Autocalib.h" //rectifier epipolar Lines and image vector<cv::Mat> Reconst::RectificaEpipolarLines(vector<cv::Mat> image, vector<vector<cv::Point2d> > MeasureVector, vector<cv::Mat> fundMatrix) { vector<cv::Mat> outImage; vector<cv::Mat> tempImage=image; vector<vector<cv::Point2d> > tempMeasureVector=MeasureVector; cv::Mat Frect = (cv::Mat_<double>(3,3) << 0,0,0,0,0,-1.0,0,1.0,0); cout << Frect << endl; Autocalib calib; for (int i=0;i<tempImage.size()-1;i++) { RectifierAffine *rec = new RectifierAffine(); rec->init(&tempImage[i],&tempImage[i+1],&fundMatrix[i],&MeasureVector[i],&MeasureVector[i+1]); rec->rectify(); cv::Mat input1, input2; rec->getResult(input1, input2,&MeasureVector[i],&MeasureVector[i+1]); outImage.push_back(input1); outImage.push_back(input2); cv::Mat retifImg; retifImg=calib.plotStereoWithEpilines(outImage[2*i],outImage[2*i+1],Frect,MeasureVector[i],MeasureVector[i+1]); cv::namedWindow( "Epipolar lines: rectified", cv::WINDOW_NORMAL ); cv::imshow("Epipolar lines: rectified", retifImg); tempMeasureVector[i+1].swap(MeasureVector[i+1]); cv::waitKey(0); } return outImage; } //get disparity map and the dense point void Reconst::disparity(vector<cv::Mat> image) { DenseMatcher DM; for (int i=0;i<image.size()/2;i++) { DM.init(&image[2*i],&image[2*i+1]); DM.calculateDisparityMap(); DM.plotDisparityMap(); cv::Mat densePt=DM.getDensePoint(); _densePoint.push_back(densePt); } } //do the triangulation and get 3D point cloud void Reconst::GetPointCloud(vector<cv::Mat> P, cv::Mat image ) { vector<cv::Mat> rectifiedMeseureMatrice=_densePoint; vector<cv::Mat> cameraMatrix=GetCameraMatrix(P); //cout<<rectifiedMeseureMatrice[1].cols<< endl; pcl::PointCloud<pcl::PointXYZ> allPointCloud; Triangulator triang; for (int i=0;i<cameraMatrix.size();i++) { pcl::PointCloud<pcl::PointXYZ> ptCloud; ptCloud=triang.triangulatePoints_LinearLS(_densePoint[i], cameraMatrix[i]); //ptCloud.is_dense = true; int nbr=i; //save 3D point cloud in a file string name = "pointCloud"+to_string(nbr)+".pcd"; pcl::io::savePCDFileASCII (name, ptCloud); cerr << "Saved " << ptCloud.points.size () << " data points to pointCloud" <<i<<".pcd." << endl; } } vector<cv::Mat> Reconst::GetCameraMatrix(vector<cv::Mat> P) { vector<cv::Mat> CameraMatrix; CameraMatrix.resize(P.size()-1); for(int i=0;i<P.size()-1;i++) { CameraMatrix[i].push_back(P[i]); CameraMatrix[i].push_back(P[i+1]); } return CameraMatrix; } void Reconst::filterPointCloud(int taille) { for(int i=0;i<taille;i++ ) { std::stringstream ss1; ss1 << "pointCloud" <<std::to_string(i)<<".pcd" ; pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::PCDWriter writer; // Fill in the cloud data pcl::PCDReader reader; // Replace the path below with the path where you saved your file reader.read<pcl::PointXYZ> (ss1.str (), *cloud); std::cerr << "Cloud before filtering: " << std::endl; std::cerr << *cloud << std::endl; // Creating the KdTree object for the search method of the extraction pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>); tree->setInputCloud (cloud); std::vector<pcl::PointIndices> cluster_indices; pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setClusterTolerance (8); // 2cm ec.setMinClusterSize (30); ec.setMaxClusterSize (1000000); ec.setSearchMethod (tree); ec.setInputCloud (cloud); ec.extract (cluster_indices); if(cluster_indices.size()==0){ std::cout<<"no data"<<std::endl; } int cloudSize=0; for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>); for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit) cloud_cluster->points.push_back (cloud->points[*pit]); //* cloud_cluster->width = cloud_cluster->points.size (); cloud_cluster->height = 1; cloud_cluster->is_dense = true; if(cloud_cluster->points.size ()>cloudSize) { std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl; std::stringstream ss2; ss2 << "pointCloud_filtered" <<std::to_string(i)<< ".pcd"; writer.write<pcl::PointXYZ> (ss2.str (), *cloud_cluster, false); cloudSize=cloud_cluster->points.size (); } //* } } } |