Blame view
src/densematcher.cpp
4.5 KB
b0bb08d1c init |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
#include "densematcher.h" DenseMatcher::DenseMatcher() { } DenseMatcher::DenseMatcher(int method) { _method = method; } DenseMatcher::~DenseMatcher() { } void DenseMatcher::calculateDisparityMap() { std::cout <<"Disparity calculation started... " <<endl; if ( _lftIm == NULL || _rgtIm == NULL ){ std::cout<< "DenseMatcher module in not initialized: use denseMantcher->init command "<< endl; return; } try{ cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create( 16*_params.lowerBound, 16*_params.upperBound, //number of disparities _params.blockSize); sgbm->setMode(_method); int cn = _lftIm->channels(); sgbm->setP1(8*cn*_params.blockSize*_params.blockSize); sgbm->setP2(32*cn*_params.blockSize*_params.blockSize); sgbm->compute( *_lftIm, *_rgtIm, _disp); cv::Mat_<float> temp = _disp; temp = temp / 16; cv::bilateralFilter(temp,_dispValues,5,30,30); //use bilateral filter ? //_dispValues = temp; // no filter cout << "Done"<<endl; } catch(...){ cout << "DenseMatcher::Unexpected error "<<endl; } } void DenseMatcher::plotDisparityMap() { if ( _dispValues.empty() ){ std::cout << "Disparity was not calculated yet "<< endl; return; } cv::Mat disp8; cv::normalize(_dispValues, disp8, 0, 225, cv::NORM_MINMAX, CV_8U); //cout << _disp<<endl; cv::imshow("Disparity", disp8); cv::waitKey(0); } cv::Mat DenseMatcher::getDensePoint() { int nbRow=_dispValues.rows; int nbCol=_dispValues.cols; //creat meshgrid temp1 et temp2 present reference image cv::Mat temp1=cv::Mat::zeros(nbRow,nbCol,CV_64F); cv::Mat temp2=cv::Mat::zeros(nbRow,nbCol,CV_64F); for(int i=0;i<nbRow;i++) { temp1.row(i)=double(i)*cv::Mat::ones(1,nbCol,temp1.type()); } for(int j=0;j<nbCol;j++) { temp2.col(j)=double(j)*cv::Mat::ones(nbRow,1,temp2.type()); } temp1=temp1.reshape(0,1); temp2=temp2.reshape(0,1); cv::Mat temp3; _disp.convertTo(temp3,CV_64F); temp3=temp3.reshape(0,1); temp3=temp3/16; //compute shift from first image to second image cv::Mat temp4=temp1-temp3.reshape(0,1); cv::Mat densePoint_temp; cv::Mat densePoint; densePoint_temp.push_back(temp1); densePoint_temp.push_back(temp2); densePoint_temp.push_back(temp4); densePoint_temp.push_back(temp2); //std::cout<<densePoint_temp.colRange(1,20)<<std::endl; double min,max; cv::minMaxLoc(temp3, &min, &max,0,0); //cout<<"min"<< min<<endl; temp3=temp3.reshape(0,1); //cout<<temp3.at<double>(6)<<endl; densePoint_temp=densePoint_temp.t(); //densePoint=densePoint_temp; //remove the error colum which affect final result for(int k=0;k<temp3.cols;k++) { if(ceil(temp3.at<double>(k))>min+1&&ceil(temp3.at<double>(k))<max-1) { densePoint.push_back(densePoint_temp.row(k)); } } densePoint=densePoint.t(); //cout<<"2"<<densePoint.size()<<endl; //std::cout<<densePoint.colRange(1,20)<<std::endl; return densePoint; } void DenseMatcher::filterDisparity(int newVal, int maxSpeckleSize, int maxDiff) { _paramsFilter.newVal = newVal; _paramsFilter.maxSpeckleSize = maxSpeckleSize; _paramsFilter.maxDiff = maxDiff; std::cout << "Disparity filtering started... " << endl; if ( ! _disp.empty() ){ _disp.copyTo(_dispFiltered); cv::filterSpeckles( _dispFiltered, newVal, maxSpeckleSize, maxDiff); cv::Mat_<float> temp = _dispFiltered; temp = temp / 16; _dispValues = temp; } else{ std::cout <<"Done "<<std::endl; return; } std::cout <<"Done"<< std::endl; } cv::Mat DenseMatcher::getDisparityToDisplay() const { // if ( _disp.empty() ) // AR_Printf("Disparity was not calculated yet"); cv::Mat disp8 = _disp; double minVal, maxVal; minMaxLoc(disp8, &minVal, &maxVal); //find minimum and maximum intensities cv::Mat draw; disp8.convertTo(draw, CV_8UC1, 255.0/(maxVal - minVal), -minVal * 255.0/(maxVal - minVal)); //cv::imshow("image", draw); return draw; } void DenseMatcher::plotDisparityFiltered() { if ( _dispFiltered.empty() ){ std::cout << "Disparity was not filtered yet " << endl; return; } cv::Mat disp8; cv::normalize(_dispFiltered, disp8, 0, 255, cv::NORM_MINMAX, CV_8U); cv::imshow("Disparity", disp8); } |