Blame view
include/robust_estim.hpp
5.4 KB
b0bb08d1c init |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
/** * @brief Robust estimation library * * @author Andrey Kudryavtsev (avkudr.github.io) * @date 01/03/2018 * @version 1.0 */ #ifndef ROBUST_ESTIMATOR_H #define ROBUST_ESTIMATOR_H #include <vector> #include <random> #include <numeric> #include <functional> #include <algorithm> #include <iostream> #include <iterator> namespace robest { class EstimationProblem{ public: // Functions to overload in your class: virtual double estimErrorForSample(int i) = 0; virtual void estimModelFromSamples(std::vector<int> samplesIdx) = 0; virtual int getTotalNbSamples() const = 0; int getNbParams() const{return nbParams;} int getNbMinSamples() const{return nbMinSamples;} protected: void setNbParams(int i) {nbParams = i;} void setNbMinSamples(int i){nbMinSamples = i;} private: int nbParams = -1; int nbMinSamples = -1; }; static std::random_device rd; // random device engine, usually based on /dev/random on UNIX-like systems static std::mt19937 rng(rd()); // initialize Mersennes' twister using rd to generate the seed //static std::mt19937 rng((unsigned int) - 1); // Base class for Robust Estimators class AbstractEstimator { public: // Generate X !different! random numbers from 0 to N-1 // X - minimal number of samples // N - total number of samples // generated numbers are indices of data points std::vector<int> randomSampleIdx(){ int minNbSamples = problem->getNbMinSamples(); int totalNbSamples = problem->getTotalNbSamples(); std::vector<int> allIdx(totalNbSamples); std::iota (std::begin(allIdx), std::end(allIdx), 0); // Fill with 0, 1, ..., totalNbSamples-1. // shuffle the elements of allIdx : Fisher–Yates shuffle for (int i = 0; i < minNbSamples; i++){ std::uniform_int_distribution<int> dist(0,totalNbSamples-i-1); int randInt = dist(rng); std::swap(allIdx[totalNbSamples-i-1],allIdx[randInt]); } //take last <minNbSamples> elements std::vector<int> idx( allIdx.end() - minNbSamples, allIdx.end()); // std::cout << "["; // for (auto i : idx) std::cout << i << ", "; // std::cout << "] "; return idx; } double getInliersFraction() const {return inliersFraction;} std::vector<int> getInliersIndices() const {return inliersIdx;} protected: void getInliers(double thres){ int totalNbSamples = problem->getTotalNbSamples(); inliersIdx.clear(); for(int j = 0; j < totalNbSamples; j++){ double error = problem->estimErrorForSample(j); error = error*error; if (error < thres){ inliersIdx.push_back(j); } } this->inliersFraction = (double)(inliersIdx.size()) / (double)(totalNbSamples); } EstimationProblem * problem; std::vector<int> bestIdxSet; std::vector<int> inliersIdx; double inliersFraction = -1.0; }; class RANSAC : public AbstractEstimator { public: RANSAC(){ } void solve(EstimationProblem * pb, double thres = 0.1, int nbIter = 10000){ problem = pb; int totalNbSamples = problem->getTotalNbSamples(); for (int i = 0; i < nbIter; i++){ std::vector<int> indices = randomSampleIdx(); problem->estimModelFromSamples(indices); //getInliersNb int nbInliers = 0; for(int j = 0; j < totalNbSamples; j++){ double error = problem->estimErrorForSample(j); error = error*error; if (error < thres){ nbInliers++; } } double inliersFraction = (double)(nbInliers) / (double)(problem->getTotalNbSamples()); if (inliersFraction > this->inliersFraction){ this->inliersFraction = inliersFraction; this->bestIdxSet = indices; } } problem->estimModelFromSamples(bestIdxSet); getInliers(thres); problem->estimModelFromSamples(inliersIdx); } }; class LMedS : public AbstractEstimator { public: LMedS(){ med = 1000000.0; } template <typename T> double median(std::vector<T> & v){ std::sort(v.begin(), v.end()); if (v.size() % 2 == 0){ return (double)(v[v.size()/2-1] + v[v.size()/2]) / 2; }else{ return v[v.size()/2]; } } void solve(EstimationProblem * pb, double thres = 0.1, int nbIter = 1000){ problem = pb; int totalNbSamples = problem->getTotalNbSamples(); for (int i = 0; i < nbIter; i++){ std::vector<int> indices = randomSampleIdx(); problem->estimModelFromSamples(indices); std::vector<double> errorsVec(totalNbSamples); for(int j = 0; j < problem->getTotalNbSamples(); j++){ double error = problem->estimErrorForSample(j); //errorsVec[j] = error; // error must be squared! errorsVec[j] = error*error; // error must be squared! } double med = median(errorsVec); if (med < this->med){ this->med = med; this->bestIdxSet = indices; } } problem->estimModelFromSamples(bestIdxSet); getInliers(thres); problem->estimModelFromSamples(inliersIdx); } private: double med; }; } #endif // ROBUST_ESTIMATOR_H |