Commit d16e53ac39a72d169d9b7c204be121caa81009aa
1 parent
ead55f0407
Exists in
master
add program arguments
Showing 2 changed files with 107 additions and 90 deletions Inline Diff
lab3/omp_heat2D.c
View file @
d16e53a
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
+------------------+ | 19 | 19 | +------------------+ | |
u = 100 | 20 | 20 | u = 100 | |
21 | 21 | |||
Interrior point : | 22 | 22 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | 23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | 24 | |||
****************************************************************************/ | 25 | 25 | ****************************************************************************/ | |
#include <stdio.h> | 26 | 26 | #include <stdio.h> | |
#include <stdlib.h> | 27 | 27 | #include <stdlib.h> | |
#include <math.h> | 28 | 28 | #include <math.h> | |
#include <omp.h> | 29 | 29 | #include <omp.h> | |
30 | 30 | |||
#define N 500 | 31 | 31 | #define NN 50 | |
#define M 500 | 32 | 32 | #define MM 50 | |
33 | 33 | |||
#define ITER_PRINT 100 | 34 | 34 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 35 | 35 | #define PRINT_DATA 1 | |
36 | 36 | |||
#define EPSILON 1e-1 | 37 | 37 | #define _EPSILON 0.001 | |
38 | 38 | |||
39 | 39 | |||
void update(int nx,int ny, float *u, float *unew, float * diff); | 40 | 40 | void update(int nx,int ny, float *u, float *unew, float * diff); | |
void inidat(int nx, int ny, float *u, float *unew); | 41 | 41 | void inidat(int nx, int ny, float *u, float *unew); | |
void prtdat(int nx, int ny, float *u,const char *fnam); | 42 | 42 | void prtdat(int nx, int ny, float *u,const char *fnam); | |
43 | 43 | |||
44 | 44 | |||
45 | 45 | |||
46 | 46 | |||
int main(int argc, char *argv[]) | 47 | 47 | int main(int argc, char *argv[]) | |
{ | 48 | 48 | { | |
49 | 49 | |||
float diff=1.0; | 50 | 50 | float diff=1.0; | |
51 | float EPSILON=_EPSILON; | |||
52 | int N=NN,M=MM; | |||
51 | 53 | |||
54 | if(argc !=3) | |||
55 | { | |||
56 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |||
57 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |||
58 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |||
59 | return -1; | |||
60 | } | |||
61 | ||||
62 | N = M = atoi(argv[1]); | |||
63 | EPSILON = atof(argv[2]); | |||
64 | ||||
float *u = (float *)malloc(N * M * sizeof(float)); | 52 | 65 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 53 | 66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
54 | 67 | |||
if(u==0 || unew ==0) | 55 | 68 | if(u==0 || unew ==0) | |
{ | 56 | 69 | { | |
perror("Can't allocated data\n"); | 57 | 70 | perror("Can't allocated data\n"); | |
return -1; | 58 | 71 | return -1; | |
} | 59 | 72 | } | |
60 | 73 | |||
printf ( "\n" ); | 61 | 74 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 62 | 75 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | 63 | 76 | printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 64 | 77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 65 | 78 | printf ( " over a rectangular plate.\n" ); | |
printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | 66 | 79 | printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | |
67 | 80 | |||
68 | 81 | |||
/* Initialize grid and create input file */ | 69 | 82 | /* Initialize grid and create input file */ | |
printf("Initializing grid\n"); | 70 | 83 | printf("Initializing grid\n"); | |
71 | 84 | |||
inidat(N, M,u,unew); | 72 | 85 | inidat(N, M,u,unew); | |
73 | 86 | |||
prtdat(N, M,u, "initial.dat"); | 74 | 87 | prtdat(N, M,u, "initial.dat"); | |
75 | 88 | |||
76 | ||||
printf("Start computing\n"); | 77 | 89 | printf("Start computing\n"); | |
78 | 90 | |||
int iter=0; | 79 | 91 | int iter=0; | |
80 | 92 | |||
/* | 81 | 93 | /* | |
* iterate until the new solution unew differs from the old solution u | 82 | 94 | * iterate until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 83 | 95 | * by no more than EPSILON. | |
* */ | 84 | 96 | * */ | |
85 | 97 | |||
while(diff> EPSILON) { | 86 | 98 | while(diff> EPSILON) { | |
87 | 99 | |||
update(N, M, u, unew,&diff); | 88 | 100 | update(N, M, u, unew,&diff); | |
89 | 101 | |||
if(iter%ITER_PRINT==0) | 90 | 102 | if(iter%ITER_PRINT==0) | |
printf("Iteration %d, diff = %f\n ", iter,diff); | 91 | 103 | printf("Iteration %d, diff = %f\n ", iter,diff); | |
92 | 104 | |||
iter++; | 93 | 105 | iter++; | |
} | 94 | 106 | } | |
95 | 107 | |||
prtdat(N, M, u, "final.dat"); | 96 | 108 | prtdat(N, M, u, "final.dat"); | |
97 | 109 | |||
free(u); | 98 | 110 | free(u); | |
free(unew); | 99 | 111 | free(unew); | |
} | 100 | 112 | } | |
101 | 113 | |||
102 | 114 | |||
103 | 115 | |||
/**************************************************************************** | 104 | 116 | /**************************************************************************** | |
* subroutine update | 105 | 117 | * subroutine update | |
****************************************************************************/ | 106 | 118 | ****************************************************************************/ | |
void update(int nx,int ny, float *u, float *unew, float * diff) | 107 | 119 | void update(int nx,int ny, float *u, float *unew, float * diff) | |
{ | 108 | 120 | { | |
int ix, iy; | 109 | 121 | int ix, iy; | |
*diff=0.0; | 110 | 122 | *diff=0.0; | |
111 | 123 | |||
#pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | 112 | 124 | #pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | |
for (ix = 1; ix < nx-1; ix++) { | 113 | 125 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 114 | 126 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = | 115 | 127 | unew[ix*ny+iy] = | |
(u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | 116 | 128 | (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | |
u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | 117 | 129 | u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | |
118 | 130 | |||
} | 119 | 131 | } | |
} | 120 | 132 | } | |
121 | 133 | |||
//compute reduction | 122 | 134 | //compute reduction | |
123 | 135 | |||
124 | 136 | |||
float mydiff; | 125 | 137 | float mydiff; | |
126 | 138 | |||
#pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | 127 | 139 | #pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | |
{ | 128 | 140 | { | |
mydiff=0.0; | 129 | 141 | mydiff=0.0; | |
#pragma omp for | 130 | 142 | #pragma omp for | |
for (ix = 1; ix < nx-1; ix++) { | 131 | 143 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 132 | 144 | for (iy = 1; iy < ny-1; iy++) { | |
if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 133 | 145 | if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 134 | 146 | { | |
mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 135 | 147 | mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
148 | } | |||
} | 136 | 149 | } | |
} | 137 | 150 | } | |
} | 138 | |||
139 | 151 | |||
140 | 152 | |||
# pragma omp critical | 141 | 153 | # pragma omp critical | |
{ | 142 | 154 | { | |
if (*diff < mydiff ) | 143 | 155 | if (*diff < mydiff ) | |
{ | 144 | 156 | { | |
*diff = mydiff; | 145 | 157 | *diff = mydiff; | |
} | 146 | 158 | } | |
} | 147 | |||
148 | ||||
149 | ||||
#pragma omp for | 150 | |||
for (ix = 1; ix < nx-1; ix++) { | 151 | |||
for (iy = 1; iy < ny-1; iy++) { | 152 | |||
u[ix*ny+iy] = unew[ix*ny+iy]; | 153 | |||
} | 154 | 159 | } | |
} | 155 | |||
156 | 160 | |||
157 | 161 | |||
158 | 162 | #pragma omp for | ||
159 | 163 | for (ix = 1; ix < nx-1; ix++) { | ||
} | 160 | 164 | for (iy = 1; iy < ny-1; iy++) { | |
165 | u[ix*ny+iy] = unew[ix*ny+iy]; | |||
166 | } | |||
167 | } | |||
168 | } | |||
} | 161 | 169 | } | |
162 | 170 | |||
/***************************************************************************** | 163 | 171 | /***************************************************************************** | |
* Initialize Data | 164 | 172 | * Initialize Data | |
*****************************************************************************/ | 165 | 173 | *****************************************************************************/ | |
void inidat(int nx, int ny, float *u, float *unew) | 166 | 174 | void inidat(int nx, int ny, float *u, float *unew) | |
{ | 167 | 175 | { | |
int ix, iy; | 168 | 176 | int ix, iy; | |
169 | 177 | |||
/* | 170 | 178 | /* | |
*Set boundary data and interrior values | 171 | 179 | *Set boundary data and interrior values | |
* */ | 172 | 180 | * */ | |
for (ix = 0; ix < nx; ix++) | 173 | 181 | for (ix = 0; ix < nx; ix++) | |
for (iy = 0; iy < ny; iy++) { | 174 | 182 | for (iy = 0; iy < ny; iy++) { | |
175 | 183 | |||
if(ix==0) | 176 | 184 | if(ix==0) | |
{ | 177 | 185 | { | |
u[ix*ny+iy]=0.0; | 178 | 186 | u[ix*ny+iy]=0.0; | |
} | 179 | 187 | } | |
else | 180 | 188 | else | |
if(iy==0 && ix!=0) | 181 | 189 | if(iy==0 && ix!=0) | |
{ | 182 | 190 | { | |
u[ix*ny+iy]=100.0; | 183 | 191 | u[ix*ny+iy]=100.0; | |
}else | 184 | 192 | }else | |
185 | ||||
if(ix==nx-1) | 186 | |||
{ | 187 | |||
u[ix*ny+iy]=100.0; | 188 | |||
}else | 189 | |||
190 | 193 | |||
if(iy==ny-1 && ix!=0) | 191 | 194 | if(ix==nx-1) | |
{ | 192 | 195 | { | |
u[ix*ny+iy]=100.0; | 193 | 196 | u[ix*ny+iy]=100.0; | |
}else | 194 | 197 | }else | |
195 | 198 | |||
u[ix*ny+iy]=( float ) ( 2 * nx + 2 * ny - 4 ); | 196 | 199 | if(iy==ny-1 && ix!=0) | |
200 | { | |||
201 | u[ix*ny+iy]=100.0; | |||
202 | }else | |||
203 | ||||
204 | u[ix*ny+iy]=0.0; | |||
} | 197 | 205 | } | |
} | 198 | 206 | } | |
199 | 207 | |||
/************************************************************************** | 200 | 208 | /************************************************************************** | |
* Print Data to files | 201 | 209 | * Print Data to files | |
**************************************************************************/ | 202 | 210 | **************************************************************************/ | |
void prtdat(int nx, int ny, float *u,const char *fnam) | 203 | 211 | void prtdat(int nx, int ny, float *u,const char *fnam) | |
{ | 204 | 212 | { | |
205 | 213 | |||
int ix, iy; | 206 | 214 | int ix, iy; | |
FILE *fp; | 207 | 215 | FILE *fp; | |
208 | 216 | |||
if(ITER_PRINT==0)return; | 209 | 217 | if(ITER_PRINT==0)return; | |
210 | 218 | |||
fp = fopen(fnam, "w"); | 211 | 219 | fp = fopen(fnam, "w"); | |
212 | 220 | |||
for (ix = 0 ; ix < nx; ix++) { | 213 | 221 | for (ix = 0 ; ix < nx; ix++) { | |
for (iy =0; iy < ny; iy++) { | 214 | 222 | for (iy =0; iy < ny; iy++) { |
lab3/ser_heat2D.c
View file @
d16e53a
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
+------------------+ | 19 | 19 | +------------------+ | |
u = 100 | 20 | 20 | u = 100 | |
21 | 21 | |||
Interrior point : | 22 | 22 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | 23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | 24 | |||
****************************************************************************/ | 25 | 25 | ****************************************************************************/ | |
#include <stdio.h> | 26 | 26 | #include <stdio.h> | |
#include <stdlib.h> | 27 | 27 | #include <stdlib.h> | |
#include <math.h> | 28 | 28 | #include <math.h> | |
29 | 29 | |||
#define N 200 | 30 | 30 | #define NN 50 | |
#define M 200 | 31 | 31 | #define MM 50 | |
32 | 32 | |||
#define ITER_PRINT 100 | 33 | 33 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 34 | 34 | #define PRINT_DATA 1 | |
35 | 35 | |||
#define EPSILON 1e-1 | 36 | 36 | #define _EPSILON 0.01 | |
37 | 37 | |||
38 | 38 | |||
void update(int nx,int ny, float *u, float *unew, float * diff); | 39 | 39 | void update(int nx,int ny, float *u, float *unew, float * diff); | |
void inidat(int nx, int ny, float *u, float *unew); | 40 | 40 | void inidat(int nx, int ny, float *u, float *unew); | |
void prtdat(int nx, int ny, float *u,const char *fnam); | 41 | 41 | void prtdat(int nx, int ny, float *u,const char *fnam); | |
42 | 42 | |||
43 | 43 | |||
44 | 44 | |||
45 | 45 | |||
int main(int argc, char *argv[]) | 46 | 46 | int main(int argc, char *argv[]) | |
{ | 47 | 47 | { | |
48 | int N=NN,M=MM; | |||
48 | 49 | |||
50 | float EPSILON=_EPSILON; | |||
51 | ||||
52 | if(argc !=3) | |||
53 | { | |||
54 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |||
55 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |||
56 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |||
57 | return -1; | |||
58 | } | |||
59 | ||||
60 | N = M = atoi(argv[1]); | |||
61 | EPSILON = atof(argv[2]); | |||
62 | ||||
float diff=1.0; | 49 | 63 | float diff=1.0; | |
50 | 64 | |||
float *u = (float *)malloc(N * M * sizeof(float)); | 51 | 65 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 52 | 66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
53 | 67 | |||
if(u==0 || unew ==0) | 54 | 68 | if(u==0 || unew ==0) | |
{ | 55 | 69 | { | |
perror("Can't allocated data\n"); | 56 | 70 | perror("Can't allocated data\n"); | |
return -1; | 57 | 71 | return -1; | |
} | 58 | 72 | } | |
59 | 73 | |||
printf ( "\n" ); | 60 | 74 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 61 | 75 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Serial version\n" ); | 62 | 76 | printf ( " Serial version\n" ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 63 | 77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 64 | 78 | printf ( " over a rectangular plate.\n" ); | |
printf ( "\n" ); | 65 | 79 | printf ( "\n" ); | |
printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | 66 | 80 | printf ( " Spatial grid of %d by %d points.\n", M, N ); | |
81 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |||
67 | 82 | |||
68 | ||||
/* Initialize grid and create input file */ | 69 | 83 | /* Initialize grid and create input file */ | |
printf("Initializing grid\n"); | 70 | 84 | printf("Initializing grid\n"); | |
71 | 85 | |||
inidat(N, M,u,unew); | 72 | 86 | inidat(N, M,u,unew); | |
73 | 87 | |||
prtdat(N, M,u, "initial.dat"); | 74 | 88 | prtdat(N, M,u, "initial.dat"); | |
75 | ||||
76 | 89 | |||
printf("Start computing\n"); | 77 | 90 | printf("Start computing\n\n"); | |
78 | 91 | |||
int iter=0; | 79 | 92 | int iter=0; | |
80 | 93 | |||
/* | 81 | 94 | /* | |
* iterate until the new solution unew differs from the old solution u | 82 | 95 | * iterate until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 83 | 96 | * by no more than EPSILON. | |
* */ | 84 | 97 | * */ | |
85 | 98 | |||
while(diff> EPSILON) { | 86 | 99 | while(diff> EPSILON) { | |
87 | 100 | |||
update(N, M, u, unew,&diff); | 88 | 101 | update(N, M, u, unew,&diff); | |
89 | 102 | |||
if(iter%ITER_PRINT==0) | 90 | 103 | if(iter%ITER_PRINT==0) | |
printf("Iteration %d, diff = %f\n ", iter,diff); | 91 | 104 | ||
105 | printf("Iteration %d, diff = %f\n ", iter,diff); | |||
92 | 106 | |||
iter++; | 93 | 107 | iter++; | |
} | 94 | 108 | } | |
95 | 109 | |||
prtdat(N, M, u, "final.dat"); | 96 | 110 | prtdat(N, M, u, "final.dat"); | |
97 | 111 | |||
free(u); | 98 | 112 | free(u); | |
free(unew); | 99 | 113 | free(unew); | |
} | 100 | 114 | } | |
101 | 115 | |||
102 | 116 | |||
103 | 117 | |||
/**************************************************************************** | 104 | 118 | /**************************************************************************** | |
* subroutine update | 105 | 119 | * subroutine update | |
****************************************************************************/ | 106 | 120 | ****************************************************************************/ | |
void update(int nx,int ny, float *u, float *unew, float * diff) | 107 | 121 | void update(int nx,int ny, float *u, float *unew, float * diff) | |
{ | 108 | 122 | { | |
int ix, iy; | 109 | 123 | int ix, iy; | |
*diff=0.0; | 110 | 124 | *diff=0.0; | |
111 | 125 | |||
for (ix = 1; ix < nx-1; ix++) { | 112 | 126 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 113 | 127 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = | 114 | 128 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |
(u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | 115 | 129 | ; | |
u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | 116 | |||
117 | ||||
if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 118 | 130 | if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 119 | 131 | { | |
*diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 120 | 132 | *diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
} | 121 | 133 | } | |
} | 122 | 134 | } | |
123 | 135 | |||
} | 124 | 136 | } | |
125 | 137 | |||
126 | 138 | |||
for (ix = 1; ix < nx-1; ix++) { | 127 | 139 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 128 | 140 | for (iy = 1; iy < ny-1; iy++) { | |
u[ix*ny+iy] = unew[ix*ny+iy]; | 129 | 141 | u[ix*ny+iy] = unew[ix*ny+iy]; | |
} | 130 | 142 | } | |
} | 131 | 143 | } | |
132 | 144 | |||
} | 133 | 145 | } | |
134 | 146 | |||
/***************************************************************************** | 135 | 147 | /***************************************************************************** | |
* Initialize Data | 136 | 148 | * Initialize Data | |
*****************************************************************************/ | 137 | 149 | *****************************************************************************/ | |
void inidat(int nx, int ny, float *u, float *unew) | 138 | 150 | void inidat(int nx, int ny, float *u, float *unew) | |
{ | 139 | 151 | { | |
int ix, iy; | 140 | 152 | int ix, iy; | |
141 | 153 | |||
/* | 142 | 154 | /* | |
*Set boundary data and interrior values | 143 | 155 | *Set boundary data and interrior values | |
* */ | 144 | 156 | * */ | |
for (ix = 0; ix < nx; ix++) | 145 | 157 | for (ix = 0; ix < nx; ix++) | |
for (iy = 0; iy < ny; iy++) { | 146 | 158 | for (iy = 0; iy < ny; iy++) { | |
147 | 159 | |||
if(ix==0) | 148 | 160 | if(ix==0) | |
{ | 149 | 161 | { | |
u[ix*ny+iy]=0.0; | 150 | 162 | u[ix*ny+iy]=0.0; | |
} | 151 | 163 | } | |
else | 152 | 164 | else | |
if(iy==0 && ix!=0) | 153 | 165 | if(iy==0 && ix!=0) | |
{ | 154 | 166 | { | |
u[ix*ny+iy]=100.0; | 155 | 167 | u[ix*ny+iy]=100.0; | |
}else | 156 | 168 | }else | |
157 | 169 | |||
if(ix==nx-1) | 158 | 170 | if(ix==nx-1) | |
{ | 159 | 171 | { | |
u[ix*ny+iy]=100.0; | 160 | 172 | u[ix*ny+iy]=100.0; | |
}else | 161 | 173 | }else | |
162 | 174 | |||
if(iy==ny-1 && ix!=0) | 163 | 175 | if(iy==ny-1 && ix!=0) | |
{ | 164 | 176 | { | |
u[ix*ny+iy]=100.0; | 165 | 177 | u[ix*ny+iy]=100.0; | |
}else | 166 | 178 | }else | |
167 | 179 | |||
u[ix*ny+iy]=( float ) ( 2 * nx + 2 * ny - 4 ); | 168 | 180 | u[ix*ny+iy]=0.0; |