Commit 9cad13733896913c2918ed58ee8f7815593f7448
1 parent
6c0f7fa151
Exists in
master
MAJ
Showing 5 changed files with 7 additions and 7 deletions Inline Diff
lab1/pi_mpi.c
View file @
9cad137
#include <stdio.h> | 1 | 1 | #include <stdio.h> | |
#include <string.h> | 2 | 2 | #include <string.h> | |
#include "mpi/mpi.h" | 3 | 3 | #include "mpi.h" | |
#define N 100000000 | 4 | 4 | #define N 100000000 | |
5 | 5 | |||
int main (int argc, char** argv) | 6 | 6 | int main (int argc, char** argv) | |
{ | 7 | 7 | { | |
int rank; | 8 | 8 | int rank; | |
int size; | 9 | 9 | int size; | |
long long int n; | 10 | 10 | long long int n; | |
long long int i; | 11 | 11 | long long int i; | |
12 | 12 | |||
double l_sum,total_sum, x, h; | 13 | 13 | double l_sum,total_sum, x, h; | |
14 | 14 | |||
MPI_Init(NULL, NULL); | 15 | 15 | MPI_Init(NULL, NULL); | |
16 | 16 | |||
MPI_Comm_size(MPI_COMM_WORLD, &size); | 17 | 17 | MPI_Comm_size(MPI_COMM_WORLD, &size); | |
MPI_Comm_rank(MPI_COMM_WORLD, &rank); | 18 | 18 | MPI_Comm_rank(MPI_COMM_WORLD, &rank); | |
19 | 19 | |||
n=N; | 20 | 20 | n=N; | |
21 | 21 | |||
if(rank==0) | 22 | 22 | if(rank==0) | |
{ | 23 | 23 | { | |
if(argc==2) | 24 | 24 | if(argc==2) | |
{ | 25 | 25 | { | |
n = atoll(argv[1]); | 26 | 26 | n = atoll(argv[1]); | |
} | 27 | 27 | } | |
28 | 28 | |||
printf("MPI version with process = %d\n", size); | 29 | 29 | printf("MPI version with process = %d\n", size); | |
printf("Number of intervals: %lld\n", n); | 30 | 30 | printf("Number of intervals: %lld\n", n); | |
} | 31 | 31 | } | |
32 | 32 | |||
33 | 33 | |||
MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); | 34 | 34 | MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); | |
35 | 35 | |||
36 | 36 | |||
h = 1.0/n; | 37 | 37 | h = 1.0/n; | |
38 | 38 | |||
l_sum = 0.0; | 39 | 39 | l_sum = 0.0; | |
40 | 40 | |||
for (i = rank; i < n; i += size) | 41 | 41 | for (i = rank; i < n; i += size) | |
{ | 42 | 42 | { |
lab1/pi_ser.c
View file @
9cad137
#include <stdio.h> | 1 | 1 | #include <stdio.h> | |
#include <stdlib.h> | 2 | 2 | #include <stdlib.h> | |
#include <string.h> | 3 | 3 | #include <string.h> | |
#define N 100000000 | 4 | 4 | #define N 100000000 | |
int main (int argc, char** argv) | 5 | 5 | int main (int argc, char** argv) | |
{ | 6 | 6 | { | |
long long int n; | 7 | 7 | long long int n; | |
long long int i; | 8 | 8 | long long int i; | |
9 | 9 | |||
double l_sum, x, h; | 10 | 10 | double l_sum, x, h; | |
11 | 11 | |||
n=N; | 12 | 12 | n=N; | |
13 | 13 | |||
if(argc==2) | 14 | 14 | if(argc==2) | |
{ | 15 | 15 | { | |
n=atol(argv[1]); | 16 | 16 | n=atol(argv[1]); | |
} | 17 | 17 | } | |
18 | 18 | |||
19 | 19 | |||
h = 1.0/n; | 20 | 20 | h = 1.0/n; | |
21 | 21 | |||
l_sum = 0.0; | 22 | 22 | l_sum = 0.0; | |
23 | 23 | |||
for (i = 0; i < n; i ++) | 24 | 24 | for (i = 0; i < n; i ++) | |
{ | 25 | 25 | { | |
x = (i + 0.5)*h; | 26 | 26 | x = (i+0.5)*h; |
lab3/mpi_heat2D.c
View file @
9cad137
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
| | | 19 | 19 | | | | |
| | | 20 | 20 | | | | |
| | | 21 | 21 | | | | |
+------------------+ | 22 | 22 | +------------------+ | |
u = 100 | 23 | 23 | u = 100 | |
24 | 24 | |||
Interrior point : | 25 | 25 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 26 | 26 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
27 | 27 | |||
28 | 28 | |||
PARALLEL MPI VERSION : | 29 | 29 | PARALLEL MPI VERSION : | |
30 | 30 | |||
+-------------------+ | 31 | 31 | +-------------------+ | |
| | P0 m=(n-2)/P +2 | 32 | 32 | | | P0 m=(n-2)/P +2 | |
+-------------------+ | 33 | 33 | +-------------------+ | |
| | P1 | 34 | 34 | | | P1 | |
+-------------------+ | 35 | 35 | +-------------------+ | |
n | | .. | 36 | 36 | n | | .. | |
+-------------------+ | 37 | 37 | +-------------------+ | |
| | Pq | 38 | 38 | | | Pq | |
+-------------------+ | 39 | 39 | +-------------------+ | |
40 | 40 | |||
<-------- n --------> | 41 | 41 | <-------- n --------> | |
<-------n-2 ------> | 42 | 42 | <-------n-2 ------> | |
43 | 43 | |||
44 | 44 | |||
****************************************************************************/ | 45 | 45 | ****************************************************************************/ | |
#include <stdio.h> | 46 | 46 | #include <stdio.h> | |
#include <stdlib.h> | 47 | 47 | #include <stdlib.h> | |
#include <math.h> | 48 | 48 | #include <math.h> | |
#include <mpi/mpi.h> | 49 | 49 | #include <mpi.h> | |
#define NN 50 | 50 | 50 | #define NN 50 | |
#define MM 50 | 51 | 51 | #define MM 50 | |
52 | 52 | |||
#define RING 100 | 53 | 53 | #define RING 100 | |
#define ITER_PRINT 100 | 54 | 54 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 55 | 55 | #define PRINT_DATA 1 | |
#define MAX_ITER 1000 | 56 | 56 | #define MAX_ITER 1000 | |
#define _EPSILON 0.01 | 57 | 57 | #define _EPSILON 0.01 | |
58 | 58 | |||
59 | 59 | |||
float update(int rank,int size, int nx,int ny, float *u, float *unew); | 60 | 60 | float update(int rank,int size, int nx,int ny, float *u, float *unew); | |
void inidat(int rank, int size, int nx, int ny, float *u, float *unew); | 61 | 61 | void inidat(int rank, int size, int nx, int ny, float *u, float *unew); | |
void prtdat(int rank, int size, int nx, int ny, float *u,const char *fnam); | 62 | 62 | void prtdat(int rank, int size, int nx, int ny, float *u,const char *fnam); | |
63 | 63 | |||
64 | 64 | |||
65 | 65 | |||
66 | 66 | |||
int main(int argc, char *argv[]) | 67 | 67 | int main(int argc, char *argv[]) | |
{ | 68 | 68 | { | |
int N=NN,M=MM; | 69 | 69 | int N=NN,M=MM; | |
70 | 70 | |||
int rank,size; | 71 | 71 | int rank,size; | |
72 | 72 | |||
float EPSILON=_EPSILON; | 73 | 73 | float EPSILON=_EPSILON; | |
74 | 74 | |||
75 | 75 | |||
/* INITIALIZE MPI */ | 76 | 76 | /* INITIALIZE MPI */ | |
MPI_Init(&argc, &argv); | 77 | 77 | MPI_Init(&argc, &argv); | |
78 | 78 | |||
/* GET THE PROCESSOR ID AND NUMBER OF PROCESSORS */ | 79 | 79 | /* GET THE PROCESSOR ID AND NUMBER OF PROCESSORS */ | |
MPI_Comm_rank(MPI_COMM_WORLD, &rank); | 80 | 80 | MPI_Comm_rank(MPI_COMM_WORLD, &rank); | |
MPI_Comm_size(MPI_COMM_WORLD, &size); | 81 | 81 | MPI_Comm_size(MPI_COMM_WORLD, &size); | |
82 | 82 | |||
//Only Rank 0 read application parameters | 83 | 83 | //Only Rank 0 read application parameters | |
if(rank==0) { | 84 | 84 | if(rank==0) { | |
85 | 85 | |||
if(argc !=3) | 86 | 86 | if(argc !=3) | |
{ | 87 | 87 | { | |
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 88 | 88 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 89 | 89 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 90 | 90 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |
return -1; | 91 | 91 | return -1; | |
} | 92 | 92 | } | |
93 | 93 | |||
N = M = atoi(argv[1]); | 94 | 94 | N = M = atoi(argv[1]); | |
EPSILON = atof(argv[2]); | 95 | 95 | EPSILON = atof(argv[2]); | |
96 | 96 | |||
if(N % size!=0) | 97 | 97 | if(N % size!=0) | |
{ | 98 | 98 | { | |
fprintf(stderr,"Grid Size MUST be divisible by the number of processors !"); | 99 | 99 | fprintf(stderr,"Grid Size MUST be divisible by the number of processors !"); | |
return -1; | 100 | 100 | return -1; | |
} | 101 | 101 | } | |
102 | 102 | |||
} | 103 | 103 | } | |
104 | 104 | |||
//Wait for rank 0 , all process start here | 105 | 105 | //Wait for rank 0 , all process start here | |
MPI_Barrier(MPI_COMM_WORLD); | 106 | 106 | MPI_Barrier(MPI_COMM_WORLD); | |
107 | 107 | |||
//Exchange N | 108 | 108 | //Exchange N | |
MPI_Bcast(&N , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | 109 | 109 | MPI_Bcast(&N , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | |
//Exchange EPSILON | 110 | 110 | //Exchange EPSILON | |
MPI_Bcast(&EPSILON , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | 111 | 111 | MPI_Bcast(&EPSILON , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | |
112 | 112 | |||
//local size | 113 | 113 | //local size | |
M = (N-2) / size + 2 ; | 114 | 114 | M = (N-2) / size + 2 ; | |
115 | 115 | |||
float *u = (float *)malloc(N * M * sizeof(float)); | 116 | 116 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 117 | 117 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
118 | 118 | |||
if(u==0 || unew ==0) | 119 | 119 | if(u==0 || unew ==0) | |
{ | 120 | 120 | { | |
perror("Can't allocated data\n"); | 121 | 121 | perror("Can't allocated data\n"); | |
return -1; | 122 | 122 | return -1; | |
} | 123 | 123 | } | |
124 | 124 | |||
if(rank==0) { | 125 | 125 | if(rank==0) { | |
126 | 126 | |||
printf ( "\n" ); | 127 | 127 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 128 | 128 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Parallel MPI version using %d processors \n",size ); | 129 | 129 | printf ( " Parallel MPI version using %d processors \n",size ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 130 | 130 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 131 | 131 | printf ( " over a rectangular plate.\n" ); | |
printf ( "\n" ); | 132 | 132 | printf ( "\n" ); | |
printf ( " Spatial grid of %d by %d points.\n", N, N ); | 133 | 133 | printf ( " Spatial grid of %d by %d points.\n", N, N ); | |
printf ( " Each processor will use grid of %d by %d points.\n", M, N ); | 134 | 134 | printf ( " Each processor will use grid of %d by %d points.\n", M, N ); | |
printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | 135 | 135 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |
136 | 136 | |||
} | 137 | 137 | } | |
138 | 138 | |||
/* Initialize grid and create input file | 139 | 139 | /* Initialize grid and create input file | |
* each process initialize its part | 140 | 140 | * each process initialize its part | |
* */ | 141 | 141 | * */ | |
142 | 142 | |||
inidat(rank,size,M,N,u,unew); | 143 | 143 | inidat(rank,size,M,N,u,unew); | |
144 | 144 | |||
prtdat(rank,size,M,N,u, "initial.dat"); | 145 | 145 | prtdat(rank,size,M,N,u, "initial.dat"); | |
146 | 146 | |||
147 | 147 | |||
float diff, globaldiff=1.0; | 148 | 148 | float diff, globaldiff=1.0; | |
int iter=0; | 149 | 149 | int iter=0; | |
150 | 150 | |||
/* | 151 | 151 | /* | |
* iterate (JACOBI ITERATION) until the new solution unew differs from the old solution u | 152 | 152 | * iterate (JACOBI ITERATION) until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 153 | 153 | * by no more than EPSILON. | |
**/ | 154 | 154 | **/ | |
155 | 155 | |||
while(globaldiff> EPSILON) { | 156 | 156 | while(globaldiff> EPSILON) { | |
157 | 157 | |||
diff= update(rank,size,M,N, u, unew); | 158 | 158 | diff= update(rank,size,M,N, u, unew); | |
159 | 159 | |||
/** | 160 | 160 | /** | |
* COMPUTE GLOBAL CONVERGENCE | 161 | 161 | * COMPUTE GLOBAL CONVERGENCE | |
* */ | 162 | 162 | * */ | |
163 | 163 | |||
MPI_Allreduce(&diff, &globaldiff , 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD); | 164 | 164 | MPI_Allreduce(&diff, &globaldiff , 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD); | |
165 | 165 | |||
166 | 166 | |||
if(rank==0) | 167 | 167 | if(rank==0) | |
if(iter%ITER_PRINT==0) | 168 | 168 | if(iter%ITER_PRINT==0) | |
printf("Processor #%d, iteration %d, epsilon = %f\n ", rank,iter,globaldiff); | 169 | 169 | printf("Processor #%d, iteration %d, epsilon = %f\n ", rank,iter,globaldiff); | |
iter++; | 170 | 170 | iter++; | |
} | 171 | 171 | } | |
172 | 172 | |||
prtdat(rank,size,M,N, u, "final.dat"); | 173 | 173 | prtdat(rank,size,M,N, u, "final.dat"); | |
free(u); | 174 | 174 | free(u); | |
free(unew); | 175 | 175 | free(unew); | |
MPI_Finalize(); | 176 | 176 | MPI_Finalize(); | |
} | 177 | 177 | } | |
178 | 178 | |||
179 | 179 | |||
180 | 180 | |||
/**************************************************************************** | 181 | 181 | /**************************************************************************** | |
* subroutine update | 182 | 182 | * subroutine update | |
****************************************************************************/ | 183 | 183 | ****************************************************************************/ | |
float update(int rank, int size, int nx,int ny, float *u, float *unew){ | 184 | 184 | float update(int rank, int size, int nx,int ny, float *u, float *unew){ | |
int ix, iy; | 185 | 185 | int ix, iy; | |
float diff=0.0; | 186 | 186 | float diff=0.0; | |
MPI_Status status; | 187 | 187 | MPI_Status status; | |
188 | 188 | |||
189 | 189 | |||
/* | 190 | 190 | /* | |
* EXCHANGE GHOST CELL | 191 | 191 | * EXCHANGE GHOST CELL | |
*/ | 192 | 192 | */ | |
if (rank > 0 && rank< size-1) | 193 | 193 | if (rank > 0 && rank< size-1) | |
{ | 194 | 194 | { | |
MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | 195 | 195 | MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | |
&u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | 196 | 196 | &u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | |
MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | 197 | 197 | MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | |
&u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | 198 | 198 | &u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | |
} | 199 | 199 | } | |
200 | 200 | |||
else if (rank == 0) | 201 | 201 | else if (rank == 0) | |
MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | 202 | 202 | MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | |
&u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | 203 | 203 | &u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | |
else if (rank == size-1) | 204 | 204 | else if (rank == size-1) | |
MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | 205 | 205 | MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | |
&u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | 206 | 206 | &u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | |
207 | 207 | |||
208 | 208 | |||
209 | 209 | |||
/** | 210 | 210 | /** | |
* PERFORM LOCAL COMPUTATION | 211 | 211 | * PERFORM LOCAL COMPUTATION | |
* */ | 212 | 212 | * */ | |
213 | 213 | |||
for (ix = 1; ix < nx-1; ix++) { | 214 | 214 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 215 | 215 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | 216 | 216 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |
; | 217 | 217 | ; | |
if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 218 | 218 | if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 219 | 219 | { | |
diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 220 | 220 | diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
} | 221 | 221 | } | |
} | 222 | 222 | } | |
223 | 223 | |||
} | 224 | 224 | } | |
225 | 225 | |||
226 | 226 | |||
for (ix = 1; ix < nx-1; ix++) { | 227 | 227 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 228 | 228 | for (iy = 1; iy < ny-1; iy++) { | |
u[ix*ny+iy] = unew[ix*ny+iy]; | 229 | 229 | u[ix*ny+iy] = unew[ix*ny+iy]; | |
} | 230 | 230 | } | |
} | 231 | 231 | } | |
232 | 232 | |||
233 | 233 | |||
return diff; | 234 | 234 | return diff; | |
} | 235 | 235 | } | |
236 | 236 | |||
/***************************************************************************** | 237 | 237 | /***************************************************************************** | |
* Initialize Data | 238 | 238 | * Initialize Data | |
*****************************************************************************/ | 239 | 239 | *****************************************************************************/ | |
240 | 240 | |||
void inidat(int rank, int size,int nx, int ny, float *u, float *unew) | 241 | 241 | void inidat(int rank, int size,int nx, int ny, float *u, float *unew) | |
{ | 242 | 242 | { | |
int ix, iy; | 243 | 243 | int ix, iy; |
lab3/plot.py
View file @
9cad137
#!/usr/bin/python | 1 | 1 | #!/usr/bin/python | |
#-*-coding:utf8-*- | 2 | 2 | #-*-coding:utf8-*- | |
from sys import argv | 3 | 3 | from sys import argv | |
from pylab import * | 4 | 4 | from pylab import * | |
5 | 5 | |||
if __name__ == "__main__": | 6 | 6 | if __name__ == "__main__": | |
if len(argv) != 2: | 7 | 7 | if len(argv) != 2: | |
print "Usage: python", argv[0], " matrix.dat" | 8 | 8 | print "Usage: python", argv[0], " matrix.dat" | |
exit (0) | 9 | 9 | exit (0) | |
10 | 10 | |||
11 | 11 | |||
f = open ( argv[1] , 'r') | 12 | 12 | f = open ( argv[1] , 'r') | |
A = [ map(float,line.split()) for line in f ] | 13 | 13 | A = [ map(float,line.split()) for line in f ] | |
14 | 14 | |||
figure(1) | 15 | 15 | figure(1) |
lab3/ser_heat2D.c
View file @
9cad137
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
+------------------+ | 19 | 19 | +------------------+ | |
u = 100 | 20 | 20 | u = 100 | |
21 | 21 | |||
Interrior point : | 22 | 22 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | 23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | 24 | |||
****************************************************************************/ | 25 | 25 | ****************************************************************************/ | |
#include <stdio.h> | 26 | 26 | #include <stdio.h> | |
#include <stdlib.h> | 27 | 27 | #include <stdlib.h> | |
#include <math.h> | 28 | 28 | #include <math.h> | |
29 | 29 | |||
#define NN 50 | 30 | 30 | #define NN 50 | |
#define MM 50 | 31 | 31 | #define MM 50 | |
32 | 32 | |||
#define ITER_PRINT 100 | 33 | 33 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 34 | 34 | #define PRINT_DATA 1 | |
35 | 35 | |||
#define _EPSILON 0.01 | 36 | 36 | #define _EPSILON 0.01 | |
37 | 37 | |||
38 | 38 | |||
float update(int nx,int ny, float *u, float *unew); | 39 | 39 | float update(int nx,int ny, float *u, float *unew); | |
void inidat(int nx, int ny, float *u, float *unew); | 40 | 40 | void inidat(int nx, int ny, float *u, float *unew); | |
void prtdat(int nx, int ny, float *u,const char *fnam); | 41 | 41 | void prtdat(int nx, int ny, float *u,const char *fnam); | |
42 | 42 | |||
43 | 43 | |||
44 | 44 | |||
45 | 45 | |||
int main(int argc, char *argv[]) | 46 | 46 | int main(int argc, char *argv[]) | |
{ | 47 | 47 | { | |
int N=NN,M=MM; | 48 | 48 | int N=NN,M=MM; | |
49 | 49 | |||
float EPSILON=_EPSILON; | 50 | 50 | float EPSILON=_EPSILON; | |
51 | 51 | |||
if(argc !=3) | 52 | 52 | if(argc !=3) | |
{ | 53 | 53 | { | |
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 54 | 54 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 55 | 55 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 56 | 56 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |
return -1; | 57 | 57 | return -1; | |
} | 58 | 58 | } | |
59 | 59 | |||
N = M = atoi(argv[1]); | 60 | 60 | N = M = atoi(argv[1]); | |
EPSILON = atof(argv[2]); | 61 | 61 | EPSILON = atof(argv[2]); | |
62 | 62 | |||
float diff=1.0; | 63 | 63 | float diff=1.0; | |
64 | 64 | |||
float *u = (float *)malloc(N * M * sizeof(float)); | 65 | 65 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 66 | 66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
67 | 67 | |||
if(u==0 || unew ==0) | 68 | 68 | if(u==0 || unew ==0) | |
{ | 69 | 69 | { | |
perror("Can't allocated data\n"); | 70 | 70 | perror("Can't allocated data\n"); | |
return -1; | 71 | 71 | return -1; | |
} | 72 | 72 | } | |
73 | 73 | |||
printf ( "\n" ); | 74 | 74 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 75 | 75 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Serial version\n" ); | 76 | 76 | printf ( " Serial version\n" ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 77 | 77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 78 | 78 | printf ( " over a rectangular plate.\n" ); | |
printf ( "\n" ); | 79 | 79 | printf ( "\n" ); | |
printf ( " Spatial grid of %d by %d points.\n", M, N ); | 80 | 80 | printf ( " Spatial grid of %d by %d points.\n", M, N ); | |
printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | 81 | 81 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |
82 | 82 | |||
/* Initialize grid and create input file */ | 83 | 83 | /* Initialize grid and create input file */ | |
printf("Initializing grid\n"); | 84 | 84 | printf("Initializing grid\n"); | |
85 | 85 | |||
inidat(N, M,u,unew); | 86 | 86 | inidat(N, M,u,unew); | |
87 | 87 | |||
prtdat(N, M,u, "initial.dat"); | 88 | 88 | prtdat(N, M,u, "initial.dat"); | |
89 | 89 | |||
printf("Start computing\n\n"); | 90 | 90 | printf("Start computing\n\n"); | |
91 | 91 | |||
int iter=0; | 92 | 92 | int iter=0; | |
93 | 93 | |||
/* | 94 | 94 | /* | |
* iterate until the new solution unew differs from the old solution u | 95 | 95 | * iterate until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 96 | 96 | * by no more than EPSILON. | |
* */ | 97 | 97 | * */ | |
98 | 98 | |||
while(diff> EPSILON) { | 99 | 99 | while(diff> EPSILON) { | |
100 | 100 | |||
diff= update(N, M, u, unew); | 101 | 101 | diff= update(N, M, u, unew); | |
102 | 102 | |||
if(iter%ITER_PRINT==0) | 103 | 103 | if(iter%ITER_PRINT==0) | |
104 | 104 | |||
printf("Iteration %d, diff = %f\n ", iter,diff); | 105 | 105 | printf("Iteration %d, diff = %e\n ", iter,diff); | |
106 | 106 | |||
iter++; | 107 | 107 | iter++; | |
} | 108 | 108 | } | |
109 | 109 | |||
prtdat(N, M, u, "final.dat"); | 110 | 110 | prtdat(N, M, u, "final.dat"); | |
111 | 111 | |||
free(u); | 112 | 112 | free(u); | |
free(unew); | 113 | 113 | free(unew); | |
} | 114 | 114 | } | |
115 | 115 | |||
116 | 116 | |||
117 | 117 | |||
/**************************************************************************** | 118 | 118 | /**************************************************************************** | |
* subroutine update | 119 | 119 | * subroutine update | |
****************************************************************************/ | 120 | 120 | ****************************************************************************/ | |
float update(int nx,int ny, float *u, float *unew) | 121 | 121 | float update(int nx,int ny, float *u, float *unew) | |
{ | 122 | 122 | { | |
int ix, iy; | 123 | 123 | int ix, iy; | |
float diff=0.0; | 124 | 124 | float diff=0.0; | |
125 | 125 | |||
for (ix = 1; ix < nx-1; ix++) { | 126 | 126 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 127 | 127 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | 128 | 128 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |
; | 129 | 129 | ; | |
if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 130 | 130 | if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 131 | 131 | { | |
diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 132 | 132 | diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
} | 133 | 133 | } | |
} | 134 | 134 | } | |
135 | 135 | |||
} | 136 | 136 | } | |
137 | 137 | |||
/** | 138 | 138 | /** | |
* COPY OLD DATA | 139 | 139 | * COPY OLD DATA | |
*/ | 140 | 140 | */ | |
for (ix = 1; ix < nx-1; ix++) { | 141 | 141 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 142 | 142 | for (iy = 1; iy < ny-1; iy++) { | |
u[ix*ny+iy] = unew[ix*ny+iy]; | 143 | 143 | u[ix*ny+iy] = unew[ix*ny+iy]; | |
} | 144 | 144 | } | |
} | 145 | 145 | } | |
146 | 146 | |||
return diff; | 147 | 147 | return diff; | |
} | 148 | 148 | } | |
149 | 149 | |||
/***************************************************************************** | 150 | 150 | /***************************************************************************** | |
* Initialize Data | 151 | 151 | * Initialize Data | |
*****************************************************************************/ | 152 | 152 | *****************************************************************************/ | |
void inidat(int nx, int ny, float *u, float *unew) | 153 | 153 | void inidat(int nx, int ny, float *u, float *unew) | |
{ | 154 | 154 | { | |
int ix, iy; | 155 | 155 | int ix, iy; | |
156 | 156 | |||
/* | 157 | 157 | /* | |
*Set boundary data and interrior values | 158 | 158 | *Set boundary data and interrior values | |
* */ | 159 | 159 | * */ | |
160 | 160 | |||
161 | 161 | |||
// interior points | 162 | 162 | // interior points | |
for (ix = 1; ix < nx-1; ix++) | 163 | 163 | for (ix = 1; ix < nx-1; ix++) |