Commit 3604dfae01896fa69a8327b313cf2f5da11bc4c1
1 parent
2b4ce206b0
Exists in
master
MPI version
Showing 4 changed files with 451 additions and 63 deletions Inline Diff
lab3/Makefile
View file @
3604dfa
GCC = gcc | 1 | 1 | GCC = gcc | |
CFLAGS = -O3 -fopenmp | 2 | 2 | CFLAGS = -O3 -fopenmp | |
OMP_FLAG = -fopenmp | 3 | 3 | OMP_FLAG = -fopenmp | |
RM = rm -rf | 4 | 4 | RM = rm -rf | |
5 | MPI = mpicc | |||
6 | MPI_FLAG = -O1 -g | |||
7 | EXE = omp_heat2D ser_heat2D mpi_heat2D | |||
5 | 8 | |||
6 | ||||
EXE = omp_heat2D ser_heat2D | 7 | |||
8 | ||||
all : $(EXE) | 9 | 9 | all : $(EXE) | |
10 | 10 | |||
#.PHONY: all clean purge | 11 | 11 | #.PHONY: all clean purge | |
12 | 12 | |||
13 | 13 | |||
pi_ser: ser_heat2D.o | 14 | 14 | ser_heat2D: ser_heat2D.o | |
$(GCC) $(CFLAGS) -o $@ $^ | 15 | 15 | $(GCC) $(CFLAGS) -o $@ $^ | |
16 | 16 | |||
pi_task: omp_heat2D.o | 17 | 17 | omp_heat2D: omp_heat2D.o | |
$(GCC) $(CFLAGS) -o $@ $^ | 18 | 18 | $(GCC) $(CFLAGS) -o $@ $^ | |
19 | ||||
20 | mpi_heat2D: | |||
21 | $(MPI) $(MPI_FLAG) mpi_heat2D.c -o $@ | |||
22 | ||||
19 | 23 |
lab3/mpi_heat2D.c
View file @
3604dfa
File was created | 1 | /**************************************************************************** | ||
2 | * DESCRIPTION: | |||
3 | * Serial HEAT2D Example - C Version | |||
4 | * This example is based on a simplified | |||
5 | * two-dimensional heat equation domain decomposition. The initial | |||
6 | * temperature is computed to be high in the middle of the domain and | |||
7 | * zero at the boundaries. The boundaries are held at zero throughout | |||
8 | * the simulation. During the time-stepping, an array containing two | |||
9 | * domains is used; these domains alternate between old data and new data. | |||
10 | * | |||
11 | * The physical region, and the boundary conditions, are suggested | |||
12 | by this diagram; | |||
13 | ||||
14 | u = 0 | |||
15 | +------------------+ | |||
16 | | | | |||
17 | u = 100 | | u = 100 | |||
18 | | | | |||
19 | | | | |||
20 | | | | |||
21 | | | | |||
22 | +------------------+ | |||
23 | u = 100 | |||
24 | ||||
25 | Interrior point : | |||
26 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |||
27 | ||||
28 | ||||
29 | PARALLEL MPI VERSION : | |||
30 | ||||
31 | +-------------------+ | |||
32 | | | P0 m=(n-2)/P +2 | |||
33 | +-------------------+ | |||
34 | | | P1 | |||
35 | +-------------------+ | |||
36 | n | | .. | |||
37 | +-------------------+ | |||
38 | | | Pq | |||
39 | +-------------------+ | |||
40 | ||||
41 | <-------- n --------> | |||
42 | <-------n-2 ------> | |||
43 | ||||
44 | ||||
45 | ****************************************************************************/ | |||
46 | #include <stdio.h> | |||
47 | #include <stdlib.h> | |||
48 | #include <math.h> | |||
49 | #include <mpi/mpi.h> | |||
50 | #define NN 50 | |||
51 | #define MM 50 | |||
52 | ||||
53 | #define RING 100 | |||
54 | #define ITER_PRINT 100 | |||
55 | #define PRINT_DATA 1 | |||
56 | #define MAX_ITER 1000 | |||
57 | #define _EPSILON 0.01 | |||
58 | ||||
59 | ||||
60 | float update(int rank,int size, int nx,int ny, float *u, float *unew); | |||
61 | void inidat(int rank, int size, int nx, int ny, float *u, float *unew); | |||
62 | void prtdat(int rank, int size, int nx, int ny, float *u,const char *fnam); | |||
63 | ||||
64 | ||||
65 | ||||
66 | ||||
67 | int main(int argc, char *argv[]) | |||
68 | { | |||
69 | int N=NN,M=MM; | |||
70 | ||||
71 | int rank,size; | |||
72 | ||||
73 | float EPSILON=_EPSILON; | |||
74 | ||||
75 | ||||
76 | /* INITIALIZE MPI */ | |||
77 | MPI_Init(&argc, &argv); | |||
78 | ||||
79 | /* GET THE PROCESSOR ID AND NUMBER OF PROCESSORS */ | |||
80 | MPI_Comm_rank(MPI_COMM_WORLD, &rank); | |||
81 | MPI_Comm_size(MPI_COMM_WORLD, &size); | |||
82 | ||||
83 | //Only Rank 0 read application parameters | |||
84 | if(rank==0) { | |||
85 | ||||
86 | if(argc !=3) | |||
87 | { | |||
88 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |||
89 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |||
90 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |||
91 | return -1; | |||
92 | } | |||
93 | ||||
94 | N = M = atoi(argv[1]); | |||
95 | EPSILON = atof(argv[2]); | |||
96 | ||||
97 | if(N % size!=0) | |||
98 | { | |||
99 | fprintf(stderr,"Grid Size MUST be divisible by the number of processors !"); | |||
100 | return -1; | |||
101 | } | |||
102 | ||||
103 | } | |||
104 | ||||
105 | //Wait for rank 0 , all process start here | |||
106 | MPI_Barrier(MPI_COMM_WORLD); | |||
107 | ||||
108 | //Exchange N | |||
109 | MPI_Bcast(&N , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | |||
110 | //Exchange EPSILON | |||
111 | MPI_Bcast(&EPSILON , 1, MPI_FLOAT, 0 , MPI_COMM_WORLD); | |||
112 | ||||
113 | //local size | |||
114 | M = (N-2)/size + 2; | |||
115 | ||||
116 | float *u = (float *)malloc(N * M * sizeof(float)); | |||
117 | float *unew = (float *)malloc(N * M * sizeof(float)); | |||
118 | ||||
119 | if(u==0 || unew ==0) | |||
120 | { | |||
121 | perror("Can't allocated data\n"); | |||
122 | return -1; | |||
123 | } | |||
124 | ||||
125 | if(rank==0) { | |||
126 | ||||
127 | printf ( "\n" ); | |||
128 | printf ( "HEATED_PLATE\n" ); | |||
129 | printf ( " Parallel MPI version using %d processors \n",size ); | |||
130 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |||
131 | printf ( " over a rectangular plate.\n" ); | |||
132 | printf ( "\n" ); | |||
133 | printf ( " Spatial grid of %d by %d points.\n", N, N ); | |||
134 | printf ( " Each processor will use grid of %d +2 by %d points.\n", M-2, N ); | |||
135 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |||
136 | ||||
137 | } | |||
138 | ||||
139 | /* Initialize grid and create input file | |||
140 | * each process initialize its part | |||
141 | * */ | |||
142 | ||||
143 | inidat(rank,size,M,N,u,unew); | |||
144 | ||||
145 | prtdat(rank,size,M,N,u, "initial.dat"); | |||
146 | ||||
147 | ||||
148 | /* | |||
149 | * iterate until the new solution unew differs from the old solution u | |||
150 | * by no more than EPSILON. | |||
151 | * */ | |||
152 | ||||
153 | float diff=1.0; | |||
154 | int iter=0; | |||
155 | ||||
156 | while(diff> EPSILON) { | |||
157 | ||||
158 | diff= update(rank,size,M,N, u, unew); | |||
159 | ||||
160 | if(rank==0) | |||
161 | if(iter%ITER_PRINT==0) | |||
162 | printf("Processor #%d, iteration %d, epsilon = %f\n ", rank,iter,diff); | |||
163 | iter++; | |||
164 | } | |||
165 | ||||
166 | prtdat(rank,size,M,N, u, "final.dat"); | |||
167 | free(u); | |||
168 | free(unew); | |||
169 | MPI_Finalize(); | |||
170 | } | |||
171 | ||||
172 | ||||
173 | ||||
174 | /**************************************************************************** | |||
175 | * subroutine update | |||
176 | ****************************************************************************/ | |||
177 | float update(int rank, int size, int nx,int ny, float *u, float *unew){ | |||
178 | int ix, iy; | |||
179 | float diff=0.0; | |||
180 | float globaldiff; | |||
181 | MPI_Status status; | |||
182 | ||||
183 | ||||
184 | /* | |||
185 | * EXCHANGE GHOST CELL | |||
186 | */ | |||
187 | if (rank > 0 && rank< size-1) | |||
188 | { | |||
189 | MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | |||
190 | &u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | |||
191 | MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | |||
192 | &u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | |||
193 | } | |||
194 | ||||
195 | else if (rank == 0 && rank< size-1) | |||
196 | MPI_Sendrecv(&u[ny*(nx-2)], ny, MPI_FLOAT, rank+1, 0, | |||
197 | &u[ny*(nx-1)], ny, MPI_FLOAT, rank+1, 1, MPI_COMM_WORLD, &status); | |||
198 | else if ( rank> 0 && rank == size-1) | |||
199 | MPI_Sendrecv(&u[ny*1], ny, MPI_FLOAT, rank-1, 1, | |||
200 | &u[ny*0], ny, MPI_FLOAT, rank-1, 0, MPI_COMM_WORLD, &status); | |||
201 | ||||
202 | ||||
203 | ||||
204 | /** | |||
205 | * PERFORM LOCAL COMPUTATION | |||
206 | * */ | |||
207 | ||||
208 | for (ix = 1; ix < nx-1; ix++) { | |||
209 | for (iy = 1; iy < ny-1; iy++) { | |||
210 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |||
211 | ; | |||
212 | if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |||
213 | { | |||
214 | diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |||
215 | } | |||
216 | } | |||
217 | ||||
218 | } | |||
219 | ||||
220 | ||||
221 | /** | |||
222 | * COMPUTE GLOBAL CONVERGENCE | |||
223 | * | |||
224 | * */ | |||
225 | ||||
226 | MPI_Allreduce(&diff, &globaldiff , 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD); | |||
227 | ||||
228 | ||||
229 | /** | |||
230 | * COPY OLD DATA | |||
231 | * */ | |||
232 | ||||
233 | ||||
234 | for (ix = 1; ix < nx-1; ix++) { | |||
235 | for (iy = 1; iy < ny-1; iy++) { | |||
236 | u[ix*ny+iy] = unew[ix*ny+iy]; | |||
237 | } | |||
238 | } | |||
239 | ||||
240 | ||||
241 | return globaldiff; | |||
242 | } | |||
243 |
lab3/omp_heat2D.c
View file @
3604dfa
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
+------------------+ | 19 | 19 | +------------------+ | |
u = 100 | 20 | 20 | u = 100 | |
21 | 21 | |||
Interrior point : | 22 | 22 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | 23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | 24 | |||
****************************************************************************/ | 25 | 25 | ****************************************************************************/ | |
#include <stdio.h> | 26 | 26 | #include <stdio.h> | |
#include <stdlib.h> | 27 | 27 | #include <stdlib.h> | |
#include <math.h> | 28 | 28 | #include <math.h> | |
#include <omp.h> | 29 | 29 | #include <omp.h> | |
30 | 30 | |||
#define NN 50 | 31 | 31 | #define NN 50 | |
#define MM 50 | 32 | 32 | #define MM 50 | |
33 | 33 | |||
#define ITER_PRINT 100 | 34 | 34 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 35 | 35 | #define PRINT_DATA 1 | |
36 | 36 | |||
#define _EPSILON 0.001 | 37 | 37 | #define _EPSILON 0.001 | |
38 | 38 | |||
39 | 39 | |||
void update(int nx,int ny, float *u, float *unew, float * diff); | 40 | 40 | float update(int nx,int ny, float *u, float *unew); | |
void inidat(int nx, int ny, float *u, float *unew); | 41 | 41 | void inidat(int nx, int ny, float *u, float *unew); | |
void prtdat(int nx, int ny, float *u,const char *fnam); | 42 | 42 | void prtdat(int nx, int ny, float *u,const char *fnam); | |
43 | 43 | |||
44 | 44 | |||
45 | 45 | |||
46 | 46 | |||
int main(int argc, char *argv[]) | 47 | 47 | int main(int argc, char *argv[]) | |
{ | 48 | 48 | { | |
49 | 49 | |||
float diff=1.0; | 50 | 50 | float diff=1.0; | |
float EPSILON=_EPSILON; | 51 | 51 | float EPSILON=_EPSILON; | |
int N=NN,M=MM; | 52 | 52 | int N=NN,M=MM; | |
53 | 53 | |||
if(argc !=3) | 54 | 54 | if(argc !=3) | |
{ | 55 | 55 | { | |
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 56 | 56 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 57 | 57 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 58 | 58 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |
return -1; | 59 | 59 | return -1; | |
} | 60 | 60 | } | |
61 | 61 | |||
N = M = atoi(argv[1]); | 62 | 62 | N = M = atoi(argv[1]); | |
EPSILON = atof(argv[2]); | 63 | 63 | EPSILON = atof(argv[2]); | |
64 | 64 | |||
float *u = (float *)malloc(N * M * sizeof(float)); | 65 | 65 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 66 | 66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
67 | 67 | |||
if(u==0 || unew ==0) | 68 | 68 | if(u==0 || unew ==0) | |
{ | 69 | 69 | { | |
perror("Can't allocated data\n"); | 70 | 70 | perror("Can't allocated data\n"); | |
return -1; | 71 | 71 | return -1; | |
} | 72 | 72 | } | |
73 | 73 | |||
printf ( "\n" ); | 74 | 74 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 75 | 75 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | 76 | 76 | printf ( " Parallel OpenMP version, using %d Threads\n",omp_get_max_threads() ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 77 | 77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 78 | 78 | printf ( " over a rectangular plate.\n" ); | |
printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | 79 | 79 | printf ( " Spatial grid of %d by %d points.\n\n", M, N ); | |
80 | 80 | |||
81 | 81 | |||
/* Initialize grid and create input file */ | 82 | 82 | /* Initialize grid and create input file */ | |
printf("Initializing grid\n"); | 83 | 83 | printf("Initializing grid\n"); | |
84 | 84 | |||
inidat(N, M,u,unew); | 85 | 85 | inidat(N, M,u,unew); | |
86 | 86 | |||
prtdat(N, M,u, "initial.dat"); | 87 | 87 | prtdat(N, M,u, "initial.dat"); | |
88 | 88 | |||
printf("Start computing\n"); | 89 | 89 | printf("Start computing\n"); | |
90 | 90 | |||
int iter=0; | 91 | 91 | int iter=0; | |
92 | 92 | |||
/* | 93 | 93 | /* | |
* iterate until the new solution unew differs from the old solution u | 94 | 94 | * iterate until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 95 | 95 | * by no more than EPSILON. | |
* */ | 96 | 96 | * */ | |
97 | 97 | |||
while(diff> EPSILON) { | 98 | 98 | while(diff> EPSILON) { | |
99 | 99 | |||
update(N, M, u, unew,&diff); | 100 | 100 | diff = update(N, M, u, unew); | |
101 | 101 | |||
if(iter%ITER_PRINT==0) | 102 | 102 | if(iter%ITER_PRINT==0) | |
printf("Iteration %d, diff = %f\n ", iter,diff); | 103 | 103 | printf("Iteration %d, diff = %f\n ", iter,diff); | |
104 | 104 | |||
iter++; | 105 | 105 | iter++; | |
} | 106 | 106 | } | |
107 | 107 | |||
prtdat(N, M, u, "final.dat"); | 108 | 108 | prtdat(N, M, u, "final.dat"); | |
109 | 109 | |||
free(u); | 110 | 110 | free(u); | |
free(unew); | 111 | 111 | free(unew); | |
} | 112 | 112 | } | |
113 | 113 | |||
114 | 114 | |||
115 | 115 | |||
/**************************************************************************** | 116 | 116 | /**************************************************************************** | |
* subroutine update | 117 | 117 | * subroutine update | |
****************************************************************************/ | 118 | 118 | ****************************************************************************/ | |
void update(int nx,int ny, float *u, float *unew, float * diff) | 119 | 119 | float update(int nx,int ny, float *u, float *unew) | |
{ | 120 | 120 | { | |
int ix, iy; | 121 | 121 | int ix, iy; | |
*diff=0.0; | 122 | 122 | float diff=0.0; | |
123 | 123 | |||
#pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | 124 | 124 | #pragma omp parallel for shared(nx,ny,u,unew) private (ix,iy) | |
for (ix = 1; ix < nx-1; ix++) { | 125 | 125 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 126 | 126 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = | 127 | 127 | unew[ix*ny+iy] = | |
(u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | 128 | 128 | (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + | |
u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | 129 | 129 | u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0; | |
130 | 130 | |||
} | 131 | 131 | } | |
} | 132 | 132 | } | |
133 | 133 | |||
//compute reduction | 134 | 134 | //compute reduction | |
135 | 135 | |||
136 | 136 | |||
float mydiff; | 137 | 137 | float mydiff; | |
138 | 138 | |||
139 | /** | |||
140 | * IMPLEMENT OMP REDUCE MAX | |||
141 | */ | |||
142 | ||||
#pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | 139 | 143 | #pragma omp parallel shared(nx,ny,u,unew, diff) private (ix,iy,mydiff) | |
{ | 140 | 144 | { | |
mydiff=0.0; | 141 | 145 | mydiff=0.0; | |
#pragma omp for | 142 | 146 | #pragma omp for | |
for (ix = 1; ix < nx-1; ix++) { | 143 | 147 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 144 | 148 | for (iy = 1; iy < ny-1; iy++) { | |
if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 145 | 149 | if (mydiff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 146 | 150 | { | |
mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 147 | 151 | mydiff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
} | 148 | 152 | } | |
} | 149 | 153 | } | |
} | 150 | 154 | } | |
151 | 155 | |||
152 | 156 | |||
# pragma omp critical | 153 | 157 | #pragma omp critical | |
{ | 154 | 158 | { | |
if (*diff < mydiff ) | 155 | 159 | if (diff < mydiff ) | |
{ | 156 | 160 | { | |
*diff = mydiff; | 157 | 161 | diff = mydiff; | |
} | 158 | 162 | } | |
} | 159 | 163 | } | |
160 | 164 | |||
161 | 165 | /* | ||
166 | * COPY OLD DATA | |||
167 | */ | |||
#pragma omp for | 162 | 168 | #pragma omp for | |
for (ix = 1; ix < nx-1; ix++) { | 163 | 169 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 164 | 170 | for (iy = 1; iy < ny-1; iy++) { | |
u[ix*ny+iy] = unew[ix*ny+iy]; | 165 | 171 | u[ix*ny+iy] = unew[ix*ny+iy]; | |
} | 166 | 172 | } | |
} | 167 | 173 | } | |
} | 168 | 174 | } | |
175 | ||||
176 | return diff; | |||
} | 169 | 177 | } | |
170 | 178 | |||
/***************************************************************************** | 171 | 179 | /***************************************************************************** | |
* Initialize Data | 172 | 180 | * Initialize Data | |
*****************************************************************************/ | 173 | 181 | *****************************************************************************/ | |
182 | ||||
void inidat(int nx, int ny, float *u, float *unew) | 174 | 183 | void inidat(int nx, int ny, float *u, float *unew) | |
{ | 175 | 184 | { | |
int ix, iy; | 176 | 185 | int ix, iy; | |
177 | 186 | |||
/* | 178 | 187 | /* | |
*Set boundary data and interrior values | 179 | 188 | *Set boundary data and interrior values | |
* */ | 180 | 189 | * */ | |
for (ix = 0; ix < nx; ix++) | 181 | |||
for (iy = 0; iy < ny; iy++) { | 182 | |||
183 | 190 | |||
if(ix==0) | 184 | 191 | #pragma omp parallel private (ix,iy) | |
{ | 185 | 192 | { | |
u[ix*ny+iy]=0.0; | 186 | 193 | // interior points | |
} | 187 | 194 | #pragma omp for | |
else | 188 | 195 | for (ix = 1; ix < nx-1; ix++) | |
if(iy==0 && ix!=0) | 189 | 196 | for (iy = 1; iy < ny-1; iy++) { | |
{ | 190 | 197 | u[ix*ny+iy]=5.0; | |
u[ix*ny+iy]=100.0; | 191 | 198 | } | |
}else | 192 | |||
193 | 199 | |||
if(ix==nx-1) | 194 | 200 | //boundary left | |
{ | 195 | 201 | #pragma omp for | |
u[ix*ny+iy]=100.0; | 196 | 202 | for (ix = 1; ix < nx-1; ix++){ | |
}else | 197 | 203 | u[ix*ny]=100.0; | |
198 | 204 | |||
if(iy==ny-1 && ix!=0) | 199 | 205 | } | |
{ | 200 | |||
u[ix*ny+iy]=100.0; | 201 | |||
}else | 202 | |||
203 | 206 | |||
u[ix*ny+iy]=0.0; | 204 | 207 | //boundary right | |
} | 205 | 208 | #pragma omp for | |
209 | for (ix = 1; ix < nx-1; ix++){ | |||
210 | u[ix*ny+ (ny-1)]=100.0; | |||
211 | ||||
212 | } | |||
213 | ||||
214 | //boundary down | |||
215 | #pragma omp for | |||
216 | for (iy = 0; iy < ny; iy++){ | |||
217 | u[(nx-1)*(ny)+iy]=100.0; | |||
218 | ||||
219 | } | |||
220 | ||||
221 | //boundary top | |||
222 | #pragma omp for | |||
223 | for (iy = 0; iy < ny; iy++){ | |||
224 | u[iy]=0.0; | |||
225 | ||||
226 | } | |||
227 | ||||
228 | } | |||
229 | ||||
} | 206 | 230 | } |
lab3/ser_heat2D.c
View file @
3604dfa
/**************************************************************************** | 1 | 1 | /**************************************************************************** | |
* DESCRIPTION: | 2 | 2 | * DESCRIPTION: | |
* Serial HEAT2D Example - C Version | 3 | 3 | * Serial HEAT2D Example - C Version | |
* This example is based on a simplified | 4 | 4 | * This example is based on a simplified | |
* two-dimensional heat equation domain decomposition. The initial | 5 | 5 | * two-dimensional heat equation domain decomposition. The initial | |
* temperature is computed to be high in the middle of the domain and | 6 | 6 | * temperature is computed to be high in the middle of the domain and | |
* zero at the boundaries. The boundaries are held at zero throughout | 7 | 7 | * zero at the boundaries. The boundaries are held at zero throughout | |
* the simulation. During the time-stepping, an array containing two | 8 | 8 | * the simulation. During the time-stepping, an array containing two | |
* domains is used; these domains alternate between old data and new data. | 9 | 9 | * domains is used; these domains alternate between old data and new data. | |
* | 10 | 10 | * | |
* The physical region, and the boundary conditions, are suggested | 11 | 11 | * The physical region, and the boundary conditions, are suggested | |
by this diagram; | 12 | 12 | by this diagram; | |
13 | 13 | |||
u = 0 | 14 | 14 | u = 0 | |
+------------------+ | 15 | 15 | +------------------+ | |
| | | 16 | 16 | | | | |
u = 100 | | u = 100 | 17 | 17 | u = 100 | | u = 100 | |
| | | 18 | 18 | | | | |
+------------------+ | 19 | 19 | +------------------+ | |
u = 100 | 20 | 20 | u = 100 | |
21 | 21 | |||
Interrior point : | 22 | 22 | Interrior point : | |
u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | 23 | 23 | u[Central] = (1/4) * ( u[North] + u[South] + u[East] + u[West] ) | |
24 | 24 | |||
****************************************************************************/ | 25 | 25 | ****************************************************************************/ | |
#include <stdio.h> | 26 | 26 | #include <stdio.h> | |
#include <stdlib.h> | 27 | 27 | #include <stdlib.h> | |
#include <math.h> | 28 | 28 | #include <math.h> | |
29 | 29 | |||
#define NN 50 | 30 | 30 | #define NN 50 | |
#define MM 50 | 31 | 31 | #define MM 50 | |
32 | 32 | |||
#define ITER_PRINT 100 | 33 | 33 | #define ITER_PRINT 100 | |
#define PRINT_DATA 1 | 34 | 34 | #define PRINT_DATA 1 | |
35 | 35 | |||
#define _EPSILON 0.01 | 36 | 36 | #define _EPSILON 0.01 | |
37 | 37 | |||
38 | 38 | |||
void update(int nx,int ny, float *u, float *unew, float * diff); | 39 | 39 | float update(int nx,int ny, float *u, float *unew); | |
void inidat(int nx, int ny, float *u, float *unew); | 40 | 40 | void inidat(int nx, int ny, float *u, float *unew); | |
void prtdat(int nx, int ny, float *u,const char *fnam); | 41 | 41 | void prtdat(int nx, int ny, float *u,const char *fnam); | |
42 | 42 | |||
43 | 43 | |||
44 | 44 | |||
45 | 45 | |||
int main(int argc, char *argv[]) | 46 | 46 | int main(int argc, char *argv[]) | |
{ | 47 | 47 | { | |
int N=NN,M=MM; | 48 | 48 | int N=NN,M=MM; | |
49 | 49 | |||
float EPSILON=_EPSILON; | 50 | 50 | float EPSILON=_EPSILON; | |
51 | 51 | |||
if(argc !=3) | 52 | 52 | if(argc !=3) | |
{ | 53 | 53 | { | |
fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | 54 | 54 | fprintf(stderr,"usage %s N EPSILON\n ", argv[0]); | |
fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | 55 | 55 | fprintf(stderr,"\t\twhere N is GRID size, EPSILON is Tolerance\n"); | |
fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | 56 | 56 | fprintf(stderr,"\t\texample N = 100, EPSILON = 0.1\n"); | |
return -1; | 57 | 57 | return -1; | |
} | 58 | 58 | } | |
59 | 59 | |||
N = M = atoi(argv[1]); | 60 | 60 | N = M = atoi(argv[1]); | |
EPSILON = atof(argv[2]); | 61 | 61 | EPSILON = atof(argv[2]); | |
62 | 62 | |||
float diff=1.0; | 63 | 63 | float diff=1.0; | |
64 | 64 | |||
float *u = (float *)malloc(N * M * sizeof(float)); | 65 | 65 | float *u = (float *)malloc(N * M * sizeof(float)); | |
float *unew = (float *)malloc(N * M * sizeof(float)); | 66 | 66 | float *unew = (float *)malloc(N * M * sizeof(float)); | |
67 | 67 | |||
if(u==0 || unew ==0) | 68 | 68 | if(u==0 || unew ==0) | |
{ | 69 | 69 | { | |
perror("Can't allocated data\n"); | 70 | 70 | perror("Can't allocated data\n"); | |
return -1; | 71 | 71 | return -1; | |
} | 72 | 72 | } | |
73 | 73 | |||
printf ( "\n" ); | 74 | 74 | printf ( "\n" ); | |
printf ( "HEATED_PLATE\n" ); | 75 | 75 | printf ( "HEATED_PLATE\n" ); | |
printf ( " Serial version\n" ); | 76 | 76 | printf ( " Serial version\n" ); | |
printf ( " A program to solve for the steady state temperature distribution\n" ); | 77 | 77 | printf ( " A program to solve for the steady state temperature distribution\n" ); | |
printf ( " over a rectangular plate.\n" ); | 78 | 78 | printf ( " over a rectangular plate.\n" ); | |
printf ( "\n" ); | 79 | 79 | printf ( "\n" ); | |
printf ( " Spatial grid of %d by %d points.\n", M, N ); | 80 | 80 | printf ( " Spatial grid of %d by %d points.\n", M, N ); | |
printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | 81 | 81 | printf ( " The iteration will end until tolerance <= %f\n\n",EPSILON); | |
82 | 82 | |||
/* Initialize grid and create input file */ | 83 | 83 | /* Initialize grid and create input file */ | |
printf("Initializing grid\n"); | 84 | 84 | printf("Initializing grid\n"); | |
85 | 85 | |||
inidat(N, M,u,unew); | 86 | 86 | inidat(N, M,u,unew); | |
87 | 87 | |||
prtdat(N, M,u, "initial.dat"); | 88 | 88 | prtdat(N, M,u, "initial.dat"); | |
89 | 89 | |||
printf("Start computing\n\n"); | 90 | 90 | printf("Start computing\n\n"); | |
91 | 91 | |||
int iter=0; | 92 | 92 | int iter=0; | |
93 | 93 | |||
/* | 94 | 94 | /* | |
* iterate until the new solution unew differs from the old solution u | 95 | 95 | * iterate until the new solution unew differs from the old solution u | |
* by no more than EPSILON. | 96 | 96 | * by no more than EPSILON. | |
* */ | 97 | 97 | * */ | |
98 | 98 | |||
while(diff> EPSILON) { | 99 | 99 | while(diff> EPSILON) { | |
100 | 100 | |||
update(N, M, u, unew,&diff); | 101 | 101 | diff= update(N, M, u, unew); | |
102 | 102 | |||
if(iter%ITER_PRINT==0) | 103 | 103 | if(iter%ITER_PRINT==0) | |
104 | 104 | |||
printf("Iteration %d, diff = %f\n ", iter,diff); | 105 | 105 | printf("Iteration %d, diff = %f\n ", iter,diff); | |
106 | 106 | |||
iter++; | 107 | 107 | iter++; | |
} | 108 | 108 | } | |
109 | 109 | |||
prtdat(N, M, u, "final.dat"); | 110 | 110 | prtdat(N, M, u, "final.dat"); | |
111 | 111 | |||
free(u); | 112 | 112 | free(u); | |
free(unew); | 113 | 113 | free(unew); | |
} | 114 | 114 | } | |
115 | 115 | |||
116 | 116 | |||
117 | 117 | |||
/**************************************************************************** | 118 | 118 | /**************************************************************************** | |
* subroutine update | 119 | 119 | * subroutine update | |
****************************************************************************/ | 120 | 120 | ****************************************************************************/ | |
void update(int nx,int ny, float *u, float *unew, float * diff) | 121 | 121 | float update(int nx,int ny, float *u, float *unew) | |
{ | 122 | 122 | { | |
int ix, iy; | 123 | 123 | int ix, iy; | |
*diff=0.0; | 124 | 124 | float diff=0.0; | |
125 | 125 | |||
for (ix = 1; ix < nx-1; ix++) { | 126 | 126 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 127 | 127 | for (iy = 1; iy < ny-1; iy++) { | |
unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | 128 | 128 | unew[ix*ny+iy] = (u[(ix+1)*ny+iy] + u[(ix-1)*ny+iy] + u[ix*ny+iy+1] + u[ix*ny+iy-1] )/4.0 | |
; | 129 | 129 | ; | |
if (*diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | 130 | 130 | if (diff < fabs (unew[ix*ny+iy] - u[ix*ny+iy] )) | |
{ | 131 | 131 | { | |
*diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | 132 | 132 | diff = fabs ( unew[ix*ny+iy] - u[ix*ny+iy] ); | |
} | 133 | 133 | } | |
} | 134 | 134 | } | |
135 | 135 | |||
} | 136 | 136 | } | |
137 | 137 | |||
138 | 138 | /** | ||
139 | * COPY OLD DATA | |||
140 | */ | |||
for (ix = 1; ix < nx-1; ix++) { | 139 | 141 | for (ix = 1; ix < nx-1; ix++) { | |
for (iy = 1; iy < ny-1; iy++) { | 140 | 142 | for (iy = 1; iy < ny-1; iy++) { | |
u[ix*ny+iy] = unew[ix*ny+iy]; | 141 | 143 | u[ix*ny+iy] = unew[ix*ny+iy]; | |
} | 142 | 144 | } | |
} | 143 | 145 | } | |
144 | 146 | |||
147 | return diff; | |||
} | 145 | 148 | } | |
146 | 149 | |||
/***************************************************************************** | 147 | 150 | /***************************************************************************** | |
* Initialize Data | 148 | 151 | * Initialize Data | |
*****************************************************************************/ | 149 | 152 | *****************************************************************************/ | |
void inidat(int nx, int ny, float *u, float *unew) | 150 | 153 | void inidat(int nx, int ny, float *u, float *unew) | |
{ | 151 | 154 | { | |
int ix, iy; | 152 | 155 | int ix, iy; | |
153 | 156 | |||
/* | 154 | 157 | /* | |
*Set boundary data and interrior values | 155 | 158 | *Set boundary data and interrior values | |
* */ | 156 | 159 | * */ | |
for (ix = 0; ix < nx; ix++) | 157 | |||
for (iy = 0; iy < ny; iy++) { | 158 | |||
159 | 160 | |||
if(ix==0) | 160 | |||
{ | 161 | |||
u[ix*ny+iy]=0.0; | 162 | |||
} | 163 | |||
else | 164 | |||
if(iy==0 && ix!=0) | 165 | |||
{ | 166 | |||
u[ix*ny+iy]=100.0; | 167 | |||
}else | 168 | |||
169 | ||||
if(ix==nx-1) | 170 | |||
{ | 171 | |||
u[ix*ny+iy]=100.0; | 172 | |||
}else | 173 | |||
174 | 161 | |||
if(iy==ny-1 && ix!=0) | 175 | 162 | // interior points | |
{ | 176 | 163 | for (ix = 1; ix < nx-1; ix++) | |
u[ix*ny+iy]=100.0; | 177 | 164 | for (iy = 1; iy < ny-1; iy++) { | |
}else | 178 | 165 | u[ix*ny+iy]=5.0; | |
179 | ||||
u[ix*ny+iy]=0.0; | 180 | |||
} | 181 | 166 | } | |
167 | ||||
168 | //boundary left | |||
169 | for (ix = 1; ix < nx-1; ix++){ | |||
170 | u[ix*ny]=100.0; | |||
171 | ||||
172 | } | |||
173 | ||||
174 | //boundary right | |||
175 | for (ix = 1; ix < nx-1; ix++){ | |||
176 | u[ix*ny+ (ny-1)]=100.0; | |||
177 | ||||
178 | } | |||
179 | ||||
180 | //boundary down |