Blame view
src/mior/model/ModelFactory.java
3.2 KB
89f70c1ec import current mc... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
package mior.model; import mior.model.dist.LinearDistribution; import mior.model.dist.StaticDistribution; import org.slf4j.Logger; import org.slf4j.LoggerFactory; public class ModelFactory { private boolean batchModeEnabled; private boolean randomizePopulations; private int groupSize; private int blockSize; private final static Logger logger = LoggerFactory.getLogger(ModelFactory.class); public ModelFactory() { this.batchModeEnabled = true; this.randomizePopulations = false; this.groupSize = 1; this.blockSize = -1; } public IMiorModel createModel(int nbMM, int nbOM, int scale, int modelVersion) { final MiorWorld world = new MiorWorld(nbMM, nbOM, scale); final IMiorModel model; logger.info("Using model version v" + modelVersion); if (modelVersion <= 5 && groupSize > 1) { throw new UnsupportedOperationException("Mior implementation " + modelVersion + " does not support this degree (" + groupSize + ") of parallelism."); } switch (modelVersion) { case 0: model = new CPUMiorModel(world); break; case 1: model = new OCLMiorModel(world); break; case 2: model = new OCLMiorModel2(world); break; case 3: model = new OCLCSRModel(world, false); break; case 4: model = new OCLCSRModel(world, true); break; case 5: model = new OCLCSRModel2(world); break; case 6: model = new OCLParaCSRModel2(nbMM, nbOM, groupSize); if (blockSize != -1) model.setBlockSize(blockSize); break; case 7: if (randomizePopulations) { model = new OCLParaCSRModel3(nbMM, nbOM, groupSize, new LinearDistribution(nbMM, nbOM, 0.3)); } else { model = new OCLParaCSRModel3(nbMM, nbOM, groupSize, new StaticDistribution(nbMM, nbOM)); } if (blockSize != -1) model.setBlockSize(blockSize); break; case 8: if (randomizePopulations) { model = new OCLParaCSRModelAlt(nbMM, nbOM, groupSize, new LinearDistribution(nbMM, nbOM, 0.3)); } else { model = new OCLParaCSRModelAlt(nbMM, nbOM, groupSize, new StaticDistribution(nbMM, nbOM)); } if (blockSize != -1) model.setBlockSize(blockSize); break; case 9: if (randomizePopulations) { model = new OCLParaCSRModel4(nbMM, nbOM, groupSize, new LinearDistribution(nbMM, nbOM, 0.3)); } else { model = new OCLParaCSRModel4(nbMM, nbOM, groupSize, new StaticDistribution(nbMM, nbOM)); } if (blockSize != -1) model.setBlockSize(blockSize); break; default: throw new RuntimeException("Invalid model version: " + modelVersion); } model.setBatchModeEnabled(batchModeEnabled); model.setRandomEnabled(randomizePopulations); return model; } public void setBatchModeEnabled(boolean batchModeEnabled) { this.batchModeEnabled = batchModeEnabled; } public boolean isBatchModeEnabled() { return batchModeEnabled; } public void setRandomEnabled(boolean randomEnabled) { this.randomizePopulations = randomEnabled; } public boolean isRandomEnabled() { return randomizePopulations; } public void setBlockSize(int blockSize) { this.blockSize = blockSize; } public int getBlockSize() { return blockSize; } public void setGroupSize(int kernelSize) { this.groupSize = kernelSize; } public int getGroupSize() { return groupSize; } } |