Blame view

kernels/mior_model_multisim2.cl 6.84 KB
1b1e928cc   glaville   initial import of...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
  /**
   * pre-OpenCL 1.1 compatibility macros
  */
  
  #if __OPENCL_VERSION__ <= CL_VERSION_1_0
      #define atomic_add(p, v) atom_add(p, v)
      #define atomic_inc(p) atom_inc(p)
  #endif
  
  /**
   * DATA STRUCTURES
   */
   
  // Microbial colony
  typedef struct MM {
      float   x;
      float   y;
      int     carbon;
      int     dormancy;
  } MM;
  
  // Carbon deposit
  typedef struct OM {
      float   x;
      float   y;
      int     carbon;
      int     lock;
  } OM;
  
  // Environment
  typedef struct MiorWorld {
      int     nbMM;
      int     nbOM;
      int     RA;
      float   RR;
      float   GR;
      float   K;
      int     width;
      int     minSize;
      int     CO2;
      int     lock;
  } MiorWorld;
  
  /**
   * HELPERS
   */
  
  /*
  #define CAPACITY(store) store[0]
  #define NTH_LIST(store, index) (store + 1 + index * (CAPACITY(store) + 1))
  #define LIST_SIZE(list) list[0]
  #define LIST_GET(list, index) list[1 + index]
  #define LIST_SET(list, index, val) list[1 + index] = val
  #define LIST_APPEND(list, val) LIST_SET(list, atomic_inc(list), val)
  */
  
  /*
   * CSR representation (for 15 lists of max 10 items)
   * 10 2 1 5 0 0 0 0 0 0 0 0
   *    1 5 0 0 0 0 0 0 0 0 0
   *    5 8 7 3 1 4 0 0 0 0 0
   *    0 0 0 0 0 0 0 0 0 0 0
   */
   
   /* CSR Representation
    */
    
  /*
  #define NTH_CSR(store, iSim)
  #define NTH_LIST(store, index)
  */
  
  #define ACCESSIBLE(topo, iMM, iOM) (topo[iMM * world->nbOM + iOM] != -1)
  
  /**
   * KERNELS
   */
  
  /*
   * Dimensions expectations
   *
   * Global : nbSim * nbMM, nbOM
   */
  kernel void topology(
      global const MM mmList[],
      global const OM omList[],
      global const MiorWorld * world,
      global int topo[])
  {
      const int iSim = get_group_id(0) / world->nbMM;
      const int iMM = get_global_id(0) % world->nbMM;
      const int iOM = get_global_id(1);
      const int nbMM = world->nbMM;
      const int nbOM = world->nbOM;
      
      const int mmIndex = iSim * nbMM + iMM;
      const int omIndex = iSim * nbOM + iOM;
      
      const float dist = hypot(
          omList[omIndex].x - mmList[mmIndex].x,
          omList[omIndex].y - mmList[mmIndex].y
      );
      
      if (dist <= world->RA) {
          topo[mmIndex * nbOM + iOM] = 0;
  	}
  }
  
  /**
   * Dimensions expectations
   *
   * Parameters MUST already include the offset for this simulation
   * Local  : nbOM
   */
  kernel void scatter(
      global OM omList[],
      global const MiorWorld * world,
      global const int topo[],
      global int parts[])
  {
      // Retrieve current OM index
      const int iOM  = get_local_id(0);
      
      // Number of parts distributed
      int nbParts = 0;
      
      // Compute number of parts parts
      for (int iMM = 0; iMM < world->nbMM; iMM++) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              nbParts ++;
          }
      }
      
      // Compute the carbon part to allocate to each MM
      const int carbonPart = (world->K * omList[iOM].carbon) / nbParts;
      
      // Allocate parts
      for (int iMM = 0; iMM < world->nbMM; iMM++) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              parts[iMM * world->nbOM + iOM] = carbonPart;
          }
      }
      
      omList[iOM].carbon -= nbParts * carbonPart;
  }
  
  /**
   * Dimensions expectations
   *
   * Parameters MUST already include the offset for this simulation
   * Local  : nbMM
   */
  kernel void live(
      global MM mmList[],
      global MiorWorld * world,
      global int topo[],
      global int parts[])
  {
      const int iMM = get_local_id(0);
      global MM * currentMM = mmList + iMM;
      
      // Compute needs
      const int breathNeed = currentMM->carbon * world->RR;
      const int growthNeed = currentMM->carbon * world->GR;
      
      // BREATHING CHECK
      
      int iOM = 0, nbOM = world->nbOM;
      int remainingNeed = breathNeed;
      
      while (remainingNeed > 0 && iOM < nbOM) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              remainingNeed -= parts[iMM * world->nbOM + iOM];
          }
          iOM++;
      }
      
      // DORMANCY CHECK
      
      if (remainingNeed > 0) {
          currentMM->dormancy = 1;
          return;
      }
      
      // ACTUAL BREATHING
      
      iOM = 0;
      remainingNeed = breathNeed;
      currentMM->dormancy = 0;
      
      while (iOM < nbOM) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              const int offer = parts[iMM * world->nbOM + iOM];
              const int consum = min(offer, remainingNeed);
              
              remainingNeed -= consum;
              parts[iMM * world->nbOM + iOM] = offer - consum;
              
              if (remainingNeed == 0) {
                  break; // don't increment iOM !
              }
          }
          
          iOM++;
      }
      
      // ENVIRONMENT UPDATE
      
      atomic_add(&(world->CO2), breathNeed);
      
      // GROWTH
      
      remainingNeed = growthNeed;
      
      while (remainingNeed > 0 && iOM < nbOM) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              const int offer = parts[iMM * world->nbOM + iOM];
              const int consum = min(offer, remainingNeed);
              
              remainingNeed -= consum;
              parts[iMM * world->nbOM + iOM] = offer - consum;
          }
          
          iOM++;
      }
          
      // MM CARBON UPDATE
      
      currentMM->carbon += (growthNeed - remainingNeed);
  }
      
      
  /**
   * Dimensions expectations
   *
   * Local  : nbOM
   */
  kernel void gather(
      global OM omList[],
      global const MiorWorld * world,
      global const int topo[],
      global const int parts[])
  {
      // Retrieve current OM index
      const int iOM = get_local_id(0);
      
      // Update current OM carbon value
      int carbon = omList[iOM].carbon;
      
      for (int iMM = 0; iMM < world->nbMM; iMM++) {
          if (ACCESSIBLE(topo, iMM, iOM)) {
              carbon += parts[iMM * world->nbOM + iOM];
          }
      }
      
      omList[iOM].carbon = carbon;
  }
  
  /**
   * Dimensions expectations
   *
   * Global : nbSim * max(nbOM, nbMM)
   * Local  : max(nbOM, nbOM)
   */
  kernel void autolive(
      global MM mmLists[],
      global OM omLists[],
      global MiorWorld * worldList,
      global const int topoList[],
      global int partsList[])
  {
      const int iSim = get_group_id(0);
      const int iAgent = get_local_id(0);
      const int nbMM = worldList->nbMM;
      const int nbOM = worldList->nbOM;
      
      // Compute parameters offset of this simulation
      global MM * mmList = mmLists + (iSim * nbMM);
      global OM * omList = omLists + (iSim * nbOM);
      global MiorWorld * world = worldList + iSim;
      global const int * topo = topoList + (iSim * nbMM * nbOM);
      global int * parts = partsList + (iSim * nbMM * nbOM);
      
      int CO2total = -1;
      
      //for (int i = 0; i < 1; i++) {
      while (CO2total == -1 || CO2total != world->CO2) {
          CO2total = world->CO2;
          
          if (iAgent < world->nbOM) {
              scatter(omList, world, topo, parts);
          }
          
          barrier(CLK_GLOBAL_MEM_FENCE);
          
          if (iAgent < world->nbMM) {
              live(mmList, world, topo, parts);
          }
          
          barrier(CLK_GLOBAL_MEM_FENCE);
          
          if (iAgent < world->nbOM) {
              gather(omList, world, topo, parts);
          }
          
          barrier(CLK_GLOBAL_MEM_FENCE);
      }
  
  }