{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "import re\n", "\n", "with open (\"errors.txt\") as file:\n", " errors = file.read()\n", "\n", "matches = re.findall(r\"Citation\\s+`(.*?)'\", errors)\n", "\n", "with open (\"biblio.bib\") as file:\n", " current_bib = file.read()\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['ge2018theoretical',\n", " 'barbosh2020empirical',\n", " 'chen2022seismic',\n", " 'munoz2018localization',\n", " 'martinez2021empirical',\n", " 'rilling2007one',\n", " 'xu2016study',\n", " 'huang2003confidence',\n", " 'zare2023end',\n", " 'bates2021distribution']" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "found = {m : m in current_bib for m in matches}\n", "[k for k, v in found.items() if not v]" ] } ], "metadata": { "kernelspec": { "display_name": "snakemake", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 2 }