Blame view
Prediction.py
8.6 KB
6f53e5768 first2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import statistics import numpy as np class Prediction: def __init__(self, ilevels, levels, betap, deltaP, penalisation, gradeT): #The level has the note and the time for each question #Test data self.ilevels=ilevels self.levels=levels #Initialization of beta distributions for each level self.betap=betap self.INLevel=[] self.NLevel=[] self.maxGrade=10 self.factor=10 self.deltaPlus=deltaP self.gradeThreshold=gradeT self.timePenalisation=penalisation def Structure(self, base, total, questions): v1=[] v2=[] elem=1 #for i in range(1,150,2): for i in range(1,total,2): #print(i," ",dr.tolist()[0+i:2+i]) v1.append(base.tolist()[0+i:2+i]) #if (elem % 15) == 0: if (elem % questions) == 0: v2.append(v1) v1=[] elem+=1 #In this case, v2 is the last of all rows return v2 def CalculateGradePenalization(self): self.ilevels=self.Structure(self.ilevels,30,3) self.levels=self.Structure(self.levels,150,15) #Calculate the note with penalization for time used self.INLevel=[[ilist[0]-((ilist[0])*((ilist[1]/60)*self.timePenalisation)) for ilist in lev] for lev in self.ilevels] self.NLevel=[[ilist[0]-((ilist[0])*((ilist[1]/60)*self.timePenalisation)) for ilist in lev] for lev in self.levels] #Generalized Thompson sampling def Calculate1(self, NLevel): r=1 maxGrade=10 #Here start the Multi armed bandits for choose the best level. Thompson Sampling... for i in range(min(len(self.levels[0]),len(self.levels[1]),len(self.levels[2]))): if i==0: IRLevel=0 else: #Take a sample for all calculated posterior distributions Rlevel=[np.random.beta(self.betap[0][0],self.betap[0][1]), np.random.beta(self.betap[1][0],self.betap[1][1]), np.random.beta(self.betap[2][0],self.betap[2][1])] IRLevel=max(enumerate(Rlevel),key=lambda x: x[1])[0] print(Rlevel, self.betap) print("Mean 1: ", self.betap[0][0]/(self.betap[0][0]+self.betap[0][1])) print("Mean 2: ", self.betap[1][0]/(self.betap[1][0]+self.betap[1][1])) print("Mean 3: ", self.betap[2][0]/(self.betap[2][0]+self.betap[2][1])) print(IRLevel,NLevel[IRLevel][i]) #Rewards for succes or not of machine results, here the rewards are inversed because we want to rest into the machine with less success. The reward is normalized value between 0 and 1 #NLevel[IRLevel][i]=NLevel[IRLevel][i]/self.maxGrade grade=NLevel[IRLevel][i] deltaMu=(maxGrade-(2*grade))/10 print("DeltaMu: ",deltaMu) #Change the value of beta parameter index 0 sumAlphaBeta=self.betap[IRLevel][0]+self.betap[IRLevel][1] self.betap[IRLevel][0]=round((self.betap[IRLevel][0]*r)+(deltaMu*(sumAlphaBeta)),0) #Control the limits of value for first parameter self.betap[IRLevel][0]=max(1, self.betap[IRLevel][0]) #Change the value of beta parameter index 1 self.betap[IRLevel][1]=round((sumAlphaBeta*r)-self.betap[IRLevel][0],0) #Control the limits of value for second parameter self.betap[IRLevel][1]=max(1, self.betap[IRLevel][1]) print(self.betap[IRLevel][0], self.betap[IRLevel][1]) print(Rlevel, self.betap) #Bernoulli Thompson Sampling def UpdateBeta(self, grade, level): if grade >= self.gradeThreshold: #Change the value of beta parameter index 1 self.betap[level][1]+=self.deltaPlus #Correlated Thompson Sampling if level>0: self.betap[level-1][1]+=self.deltaPlus/2 if level<len(self.betap)-1: self.betap[level+1][0]+=self.deltaPlus/2 else: #Change the value of alpha parameter index 0 self.betap[level][0]+=self.deltaPlus #Correlated Thompson Sampling if level>0: self.betap[level-1][0]+=self.deltaPlus/2 if level<len(self.betap)-1: self.betap[level+1][1]+=self.deltaPlus/2 def InitializeBeta(self): c=0 for itemc in self.INLevel: for i in range(len(itemc)): #print(itemc[i]) self.UpdateBeta(itemc[i],c) c+=1 def Calculate(self): self.InitializeBeta() NLevel=self.NLevel file1=open('results_slevel.csv','a+') file2=open('results_sgrade.csv','a+') #Here start the Multi armed bandits for choose the best level. Thompson Sampling... #print("NLevel Vector: ",NLevel) for i in range(len(NLevel[0])): #if i==0: # IRLevel=0 #else: #Take a sample for all calculated posterior distributions Rlevel=[np.random.beta(p[0],p[1]) for p in self.betap] #Take the max probability value #IRLevel=max(enumerate(Rlevel),key=lambda x: x[1])[0] IRLevel=max( (v, i) for i, v in enumerate(Rlevel) )[1] #print(Rlevel, self.betap, [p[0]/(p[0]+p[1]) for p in self.betap]) print("Stochastic ",i," ",IRLevel) #print(NLevel[IRLevel][i]) file1.write(str(IRLevel)+" ") file2.write(str(IRLevel)+" "+str(NLevel[IRLevel][i])+" ") #Rewards for succes or not of machine results, here the rewards are inversed because we want to rest into the machine with less success self.UpdateBeta(NLevel[IRLevel][i],IRLevel) file1.write(" ") file2.write(" ") file1.close() file2.close() def CalculateSW(self): file1=open('results_dlevel.csv','a+') file2=open('results_dgrade.csv','a+') #file2=open('results_dtm.csv','a+') IRLevel=0 NIRLevel=0 step=0 mc0=0 mc1=0 mc2=0 mc3=0 mc4=0 #print("INLevel: ",INLevel) #for i in range(len(NLevel[0])): Level=self.INLevel clevel=[0,0,0,0,0] vindex=[0,0,0,0,0] for i in range(15): if i>0: #print("Value ",Level) Level[NIRLevel].append(self.NLevel[NIRLevel][vindex[NIRLevel]]) Level[NIRLevel].pop(0) #print("Value ",Level) vindex[NIRLevel]+=1 #vindex+=1 mc0=0 mc1=0 mc2=0 mc3=0 mc4=0 mc=0 #print("Level Vector ",Level) for IRL in range(4): if IRL == 0: mc0=Level[IRL][2]+Level[IRL][1]+Level[IRL][0] mc0=mc0/3 mc0=10*mc0/5 if IRL == 1: mc1=Level[IRL][2]+Level[IRL][1]+Level[IRL][0] mc1=mc1/3 if IRL == 2: mc2=Level[IRL][2]+Level[IRL][1]+Level[IRL][0] mc2=mc2/3 if IRL == 3: mc3=Level[IRL][2]+Level[IRL][1]+Level[IRL][0] mc3=mc3/3 if IRL == 4: mc4=Level[IRL][2]+Level[IRL][1]+Level[IRL][0] mc4=mc4/3 #print(mc0," ",mc1," ",mc2,"",mc3) mc1=max(mc0+((10/5)*mc1), (20/5)*mc1) mc2=max(mc1+((10/5)*mc2), (30/5)*mc2) mc3=max(mc2+((10/5)*mc3), (40/5)*mc3) mc=max(mc3+((10/5)*mc4), (50/5)*mc4) #print(mc0," ",mc1," ",mc2," ",mc3," ",mc) #print(mc) #file2.write(str(mc)+" ") if mc >= 0 and mc <= 15: NIRLevel=0 elif mc >= 16 and mc <= 25: NIRLevel=1 elif mc >= 26 and mc <= 35: NIRLevel=2 elif mc >= 36 and mc <= 42: NIRLevel=2 elif mc >= 43 and mc <= 50: NIRLevel=3 elif mc >= 51 and mc <= 75: NIRLevel=3 elif mc >= 76 and mc <= 100: NIRLevel=4 print("Deterministic ",i," ",NIRLevel) if NIRLevel != IRLevel: IRLevel=NIRLevel file1.write(str(IRLevel)+" ") file2.write(str(IRLevel)+" "+str(self.NLevel[IRLevel][vindex[IRLevel]])+" ") file1.write(" ") file2.write(" ") file1.close() file2.close() |