Blame view
Main.py
1.08 KB
941ec3b8d first |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from Prediction import Prediction import numpy as np import pandas as pd import random from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import median_absolute_error from math import sqrt #Prediction of complexity level (the number of levels is variable) #Each row is a complexity level, each pair [,] is the note and the time for a question (test with 3 levels) dataI=pd.read_csv('dataInitial.csv', sep=' ', header=0) data=pd.read_csv('data.csv', sep=' ', header=0) v1=[] v2=[] n=0 #for name,dr in dataI.iterrows(): for i in range(1): #initialization of Beta distribution for all the complexity levels (test with 5 levels) betap=[[1,1],[1,2],[1,3],[1,4],[1,5]] #Parameters: previous grades and times, a-priori paameters for beta distribution in each complexity level, step for change beta parameters, value of penalization for time and value of limit between win and loss pred=Prediction(dataI.iloc[i,:], data.iloc[i,:], betap, 0.2, 1/16, 6) pred.CalculateGradePenalization() pred.Calculate() pred.CalculateSW() |